
	

https://razodigiluvev.tugoduzak.com/638758900495058414706246704533126719940628?xugowurazajegudunemalonalanusaluzuporuludivipijadoloxoxosexilitisosepunuretujozikozex=sikoradeliriliredamorurezegenigiwegemokukozilokurugutigetenujibagerafilakepimelipexofilotoxusaviwisavovipirinoxukegamuvobimazadurodoguvupidurixofuvulagawubewumatedozobilalodoguxagitowoxetijaxepozunarejowat&utm_term=atividades+sobre+as+cruzadas+7o+ano+com+gabarito&pidopabasipapurewuwetivowovemofozexa=rakefizuxoxokudukafetudiduwukutaxewenifolatexibijipaxakorixipiletapitivorajosegufodutamefovifalabidi




























In	the	previous	article,	I	have	described	how	poetry	can	be	used	to	configure	Python	workspace	and	to	create	a	new	Python	package	project.	Although	poetry	creates	the	structure	of	a	package	and	adds	some	boilerplate	code,	in	order	to	develop	this	package	in	VSCode	we	need	to	do	some	additional	configurations.	In	this	post,	I	describe	how	to	start
developing	a	new	Python	package	project	in	VSCode.Table	of	ContentsPrerequisitesCurrently,	I	do	Python	development	in	(K)ubuntu	18.04	using	VSCode	as	a	enhanced	text	editor.	If	you	use	other	IDE/text	editor	or	other	operating	system,	you	may	need	to	adapt	these	instructions.Before	starting	Python	development	in	VSCode,	you	have	to	install
Python	extension.	It	is	developed	by	Microsoft	and	provides	you	rich	support	of	the	Python	language	and	tools	including	code	completion	and	formatting,	linting,	code	navigation,	etc.	In	order	to	install	this	extension,	open	VSCode	Quick	Open	(Ctrl+P),	paste	the	following	command,	and	press	enter:ext	install	ms-python.pythonConfiguring	VSCode	for
Python	DevelopmentNow,	lets	start	a	new	project	and	configure	VSCode	step-by-step.	As	I	have	mentioned	in	the	previous	article,	I	create	a	new	project	using	the	following	poetry	command:$	poetry	new	--src	new_packageThis	command	creates	new	Python	package	project	called	new_package	and	puts	the	sources	into	the	src	directory.	In	addition,
the	command	also	creates	tests	directory	where	some	pytest	tests	are	added.	After	executing	this	command,	you	should	get	the	following	structure:$	tree	new_package/new_package/	pyproject.toml	README.rst	src	new_package	__init__.py	tests	__init__.py	test_new_package.pyLets	add	a	new	main.py	module	to	our	package	with	the	following
content:from	loguru	import	loggerimport	osdef	adder(i1,	i2):	return	(i1	+	i2)def	main():	print("Cool	new_package	project!")	logger.info("We	are	here:	{}".format(os.path.abspath(__file__)))	logger.info("Adding	integers	{0}	and	{1}.	Result:	{2}".format(1,	2,	adder(1,	2)))	logger.info("Adding	floats	{0}	and	{1}.	Result:	{2}".format(1.0,	2.0,	adder(1.0,
2.0)))	logger.info("Adding	strings	{0}	and	{1}.	Result:	{2}".format(1,	2,	adder("1",	"2")))if	__name__	==	"__main__":	main()If	you	try	to	run	this	module	you	will	get	some	errors:	we	need	to	create	a	virtual	environment	and	install	there	the	loguru	package.	We	can	do	this	with	the	following	command:Now,	you	should	be	able	to	run	our	main	module.
Run	the	code	using	poetry	in	the	created	virtual	environment	and	you	should	get	the	following	output:~/tmp/new_package$	poetry	run	python	src/new_package/main.pyCool	new_package	project!2020-04-03	16:13:41.202	|	INFO	|	__main__:main:10	-	We	are	here:	/home/yury/tmp/new_package/src/new_package/main.py2020-04-03	16:13:41.202	|	INFO
|	__main__:main:11	-	Adding	integers	1	and	2.	Result:	32020-04-03	16:13:41.202	|	INFO	|	__main__:main:12	-	Adding	floats	1.0	and	2.0.	Result:	3.02020-04-03	16:13:41.202	|	INFO	|	__main__:main:13	-	Adding	strings	1	and	2.	Result:	12IntelliSense	and	Code	NavigationThe	first	thing	every	developer	currently	needs	is	IntelliSense	code	completion	tool.
In	order	to	check	if	it	works	in	VSCode	for	Python	code,	just	start	typing	in	the	editor,	e.g.,	pr	and	press	Ctrl+Space.	If	IntelliSense	is	configured	properly,	VSCode	should	provide	you	with	a	list	of	possible	options	to	complete	the	statement,	for	instance,	print.	Moreover,	if	put	your	cursor	on	this	definition,	VSCode	should	open	a	tooltip	showing	the
signature	and	the	description	of	this	method.VSCode	and	Python	extension	developers	make	use	several	tools	to	provide	IntelliSense	capabilities.	You	can	choose	the	provider	according	to	your	preferences.	Currently,	there	are	two	options:	either	use	Microsoft	Python	Analysis	Engine	(MPAE)	or	to	use	the	jedi	package.	Most	probably	your	Python
extension	will	be	configured	by	default	to	use	MPAE,	however	I	am	not	sure	about	this	for	all	platforms.	If	you	prefer	to	use	jedi	you	can	adjust	your	VSCode	preferences:	set	the	python.jediEnabled	preference	to	true.	On	my	Linux	machine,	this	setting	is	set	to	true	by	default.	If	I	set	this	preference	to	false,	IntelliSense	features	stop	working.So	as	jedi
is	crucial	for	the	Python	extension	it	is	integrated	into	it,	so	you	do	not	need	to	install	additional	Python	packages.	However,	you	can	install	this	package	into	the	system	if	you	like,	e.g.,	other	version.	In	this	case,	in	VSCode	preferences	you	have	to	provide	also	the	path	to	this	package	directory	(see	python.jediPath	setting	for	details).	However,	I	do
not	recommend	to	do	this	because	the	Python	extension	is	regularly	updated	and	therefore,	supplied	with	the	latest	jedi	version,	which	is	tested	with	this	extension.In	order	to	navigate	over	the	code,	e.g.,	in	order	to	be	able	to	run	Go	to	definition,	Find	references	and	other	commands,	you	have	to	configure	Language	Server	Protocol	(LSP)	provider.
Currently,	there	are	three	options	available	(see	preference	python.languageServer):	Jedi,	Microsoft	(default)	and	None.	If	you	choose	None	code	navigation	and	other	features	provided	by	LSP	will	not	be	available.	However,	I	have	not	noticed	any	difference	if	you	use	either	Microsoft	or	Jedi	on	my	machine.	Just	for	unification	purposes,	I	set	it	to	Jedi.
[Update:	19/04/2020]It	seems	that	now	Microsoft	has	started	to	enforce	usage	of	MPAE.	If	Jedi	is	selected	as	a	IntelliSense	engine	(python.jediEnabled	is	set	to	true),	VSCode	offers	you	to	enable	MPAE	and	restart	your	editor.	If	you	agree	it	sets	python.jediEnabled	to	false	and	python.languageServer	to	Microsoft.	Good	news	is	that	in	my	case	MPAE
is	working	ok	as	an	IntelliSense	engine.	However,	if	you	do	not	agree	next	time	you	work	on	a	Python	project	it	will	show	the	notification	again.When	I	was	looking	information	about	language	server	protocol	(LSP),	I	have	also	found	other	implementations	of	the	protocol,	e.g.,	by	Palantir.	Although	I	do	not	understand	the	purpose	of	providing	another
implementation	(it	is	implemented	in	Python,	similarly	to	jedi,	therefore,	speed	improvement	most	probably	is	not	the	reason),	however	I	assume	that	there	is	background	behind	this	choice,	it	is	just	not	obvious	to	me.Sorting	ImportsThe	power	of	Python	is	in	the	libraries	developed	for	this	language.	In	order	to	use	them	in	your	code,	you	need	to
import	in	your	code	their	definitions	and	modules.	Besides	third-party	libraries,	you	may	also	import	modules	and	definitions	from	the	standard	library,	which	is	supplied	with	the	language	interpretator	and	therefore,	does	not	require	to	be	installed),	and	from	your	package.When	you	open	Python	sources	the	first	thing	you	usually	see	is	the	list	of
imports.	So	as	there	can	be	lots	of	imports	it	may	take	you	some	time	to	understand	where	are	they	imported	from	and	what	they	influence	on.	However,	the	same	order	of	the	imports	in	every	Python	file	may	facilitate	this	process	and	help	you	to	understand	key	components	and	the	functionality	of	the	code	much	faster.	Therefore,	it	is	very	useful	to
sort	the	imports	according	to	the	same	criteria.	The	isort	tool	enables	us	to	do	this.	This	package	is	also	integrated	into	the	Python	extension,	therefore	its	functionality	is	available	by	default.You	can	organize	imports	in	the	current	module	by	pressing	Shift+Alt+O.	If	we	do	this	for	our	example	code,	isort	will	rearrange	the	modules	in	the	following
way:import	osfrom	loguru	import	loggerWithin	VSCodes	Python	extension,	the	isort	tool	uses	the	default	settings	how	to	organize	imports.	However,	it	is	possible	to	change	this	default	behavior	for	your	package.	In	order	to	do	this,	you	have	to	create	setup.cfg	file	in	the	root	of	your	project.	VSCodes	Python	extension	(actually,	the	corresponding
tools)	automatically	reads	configuration	from	this	file	and	apply	it.	In	order	to	change	the	isort	behavior,	add	the	[isort]	section	to	setup.cfg	and	modify	the	settings	you	would	like	to	adjust.	For	instance,	in	my	packages	this	section	looks	in	the	following	way:[isort]#	isort	configuration:#	See	3	-	one	module	per	line	in	parenthesismulti_line_output	=	3#
if	the	trailing	comma	should	be	included	for	the	last	modulesinclude_trailing_comma	=	true#	where	to	put	unrecognized	importsdefault_section	=	FIRSTPARTY#	Should	be:	max_string_length	-	1line_length	=	79In	order	to	understand	what	is	changed	I	have	added	the	comments	to	each	changed	setting.	More	isort	settings	and	their	description	you
can	find	here.	However,	I	would	like	to	talk	a	little	bit	more	about	the	line	length	setting.	There	are	a	lot	of	argues	in	the	development	community	what	line	length	should	be.	Some	people	suggest	80	characters	(because	it	is	the	length	of	a	string	in	a	terminal),	other	developers	prefer	100	characters	(because	this	is	the	maximum	length	of	a	string
displayed	without	being	wrapped	on	popular	version	control	system	websites	like	Github	or	Gitlab),	third	group	of	coders	votes	for	120	characters	(because	sometimes	there	are	names	of	the	functions	that	may	exceed	100	characters).	All	these	people	have	rationale,	therefore	you	should	agreed	on	that	with	your	colleagues	and	select	the	value	you
like	if	you	develop	your	code	solely.	Personally,	I	have	decided	to	use	the	default	value	equal	to	80	characters.Code	RefactoringThe	code	development	is	an	iterative	process.	From	time	to	time,	developers	review	and	improve	their	code.	This	process	is	called	refactoring.	The	most	common	refactoring	operations	are	variable	or	method	renaming	and
method	extraction.	VSCode	also	enables	you	to	perform	these	operations	on	the	Python	code.	To	achieve	this,	it	relies	on	the	Python	tool	called	rope	that	is	developed	to	facilitate	refactoring	operations.	Although	rope	provides	many	different	refactoring	operations,	currently	VSCode	supports	only	the	two	mentioned	previously.Although	the	rope	tool	is
necessary	for	Python	code	refactoring	in	VSCode,	it	is	not	supplied	with	the	Python	extension.	Therefore,	you	have	to	install	it.	So	as	this	tool	is	required	only	for	development,	lets	install	it	as	a	development	dependency.You	might	need	to	restart	your	VSCode	in	order	the	features	to	be	activated.If	you	would	try	to	rename	a	symbol	or	to	extract	a
method	without	rope	being	installed,	VSCode	would	not	be	able	to	do	this.	Instead,	it	would	offer	to	install	the	tool.	In	order	to	check	that	this	functionality	is	working,	try	to	create	a	variable	in	your	code	and	rename	it	by	selecting	it	and	pressing	F2.You	may	also	improve	the	speed	of	this	tool	by	making	some	changes	to	its	configuration.	I	would	also
suggest	to	make	the	following	changes	in	the	tool	preference	file	(.vscode/.ropeproject/config.py):Uncomment	the	line	prefs['python_files']	=	['*.py'].	With	this	preference,	rope	would	consider	only	.py	files.Add	the	following	directories	(.venv,	.pytest_cache,	.vscode)	to	the	list	of	the	ignored	resources	prefs['ignored_resources']	=	['*.pyc',	'*~',
'.ropeproject',	'.hg',	'.svn',	'_svn',	'.git',	'.tox',	'.venv',	'.pytest_cache',	'.vscode']Style	CheckingUsually,	there	is	a	number	of	developers	working	on	the	same	code.	Before	starting	new	project,	it	is	worth	to	agree	on	the	rules	how	would	you	format	the	code.	Otherwise,	you	might	spend	a	lot	of	time	arguing	during	the	code	review.	It	would	be	nice	if	these
rules	are	automatically	checked	and	inconsistencies	are	reported.	The	Python	community	has	developed	a	number	of	such	tools	called	linters.	Besides	style	checking,	linters	can	also	detect	some	logical	errors.	Therefore,	they	are	recommended	even	if	you	develop	your	project	alone.Among	Python	linters,	pylint	and	flake8	are	the	most	popular.	Both
these	linters	can	be	integrated	with	VSCode	and	the	Python	extension	(pylint	is	enabled	by	default).	However,	I	have	decided	to	use	flake8.	The	reason	for	choosing	this	linter	is	that	there	is	a	very	strict	styleguide	(a	set	of	flake8	extensions	and	custom	strict	rules)	developed	on	top	of	this	linter	called	wemake-python-styleguide.	Moreover,	pylint	has
some	drawbacks.In	order	to	start	using	this	styleguide,	we	have	to	make	some	configuration	changes	in	VSCode	and	the	Python	extension.	First	of	all,	we	have	to	enable	flake8	as	the	Python	linter:	set	python.linting.flake8Enabled	to	true;	and	disable	pylint:	set	python.linting.pylintEnabled	to	false.	Check	that	the	python.linting.flake8Path	value	is
equal	to	flake8.	Wemake-python-styleguide	depends	on	flake8	so	it	will	be	automatically	installed.	Moreover,	I	would	also	suggest	to	disable	linting	for	some	directories.	Add	.venv/**/*.py	and	.pytest_cache/**/*.py	to	python.linting.ignorePatterns:"python.linting.ignorePatterns":	[	".vscode/*.py",	"**/site-packages/**/*.py",	".venv/**/*.py",
".pytest_cache/**/*.py"]So	as	there	are	many	different	linters	developed	by	the	Python	community,	the	Python	extension	has	many	settings	regarding	them.	For	instance,	there	you	can	enable	bandit,	pylama,	pydocstyle,	pycodestyle	and	other	linters	to	check	your	project.	However,	I	do	not	recommend	you	to	do	this.	Many	of	them	are	already
integrated	into	wemake-python-styleguide	and	some	of	them	are	outdated,	therefore	you	have	to	understand	exactly	why	you	enable	them.Now,	lets	install	the	wemake-python-styleguide	package:$	poetry	add	--dev	wemake-python-styleguideSo	as	this	package	depends	on	many	packages,	it	may	take	some	time	to	install	it.	After	it	is	installed,	we	need
to	make	some	configuration	adjustments.	So	as	there	are	many	different	plugins	and	thus,	many	different	configurations,	I	have	taken	as	a	template	the	settings	from	wemake-python-package	and	modified	them	according	to	my	preferences.	Add	the	following	lines	to	setup.cfg	(I	have	added	comments	to	some	settings):[flake8]#	Base	flake8
configuration:#	=	wemakeshow-source	=	Truestatistics	=	Falsedoctests	=	True#	Plugins:max-complexity	=	6max-line-length	=	80#	strings	are	in	single	or	double	quotes#	inline-quotes	=	double#	wemake-python-styleguide	settings:i-control-code	=	True#	Disable	some	pydocstyle	checks:#	Exclude	some	pydoctest	checks	globally:ignore	=	#	Missing
docstring	in	public	module	#	D100	#	Missing	docstring	in	public	package	#	D104	#	Missing	docstring	in	public	nested	class	#	D106	#	First	line	should	be	in	imperative	mood	D401	#	line	break	after	binary	operator	W504	#	per-file	ignoring	(better	to	live)	X100	#	Unknown	directive	type	"XXX".	RST303	#	Unknown	interpreted	text	role	"XXX".
RST304	#	Darglint	configuration	#	The	docstring	parameter	type	doesn't	match	function.	#	DAR103	#	The	docstring	parameter	type	doesn't	match	function.	#	DAR203#	Excluding	some	directories:exclude	=	.git	__pycache__	.venv	.eggs	*.egg	#	add	the	following	directories	.venv	.mypy_cache	.vscode#	Ignoring	some	errors	in	some	files:per-file-
ignores	=	#	Enable	`assert`	keyword	and	magic	numbers	for	tests:	tests/*.py:	S101,	WPS226,	WPS432[darglint]#	darglint	configuration:#	=	longYou	may	need	to	restart	your	VSCode	for	the	settings	to	take	effect.	Now,	for	our	test	module	you	should	get	the	following	list	of	errors	and	warnings:	1:1	D100	Missing	docstring	in	public	module	4:1	I003
isort	expected	1	blank	line	in	imports,	found	0	5:1	E302	expected	2	blank	lines,	found	1	5:1	D103	Missing	docstring	in	public	function	8:1	E302	expected	2	blank	lines,	found	1	8:1	D103	Missing	docstring	in	public	function	9:5	WPS421	Found	wrong	function	call:	print	9:11	Q000	Remove	bad	quotes	10:17	P101	format	string	does	contain	unindexed
parameters	10:17	Q000	Remove	bad	quotes	11:17	Q000	Remove	bad	quotes	11:81	E501	line	too	long	(85	>	80	characters)	12:17	Q000	Remove	bad	quotes	12:70	WPS432	Found	magic	number:	2.0	12:81	E501	line	too	long	(91	>	80	characters)	12:86	WPS432	Found	magic	number:	2.0	13:17	Q000	Remove	bad	quotes	13:78	Q000	Remove	bad	quotes
13:81	E501	line	too	long	(88	>	80	characters)	13:83	Q000	Remove	bad	quotes	16:16	Q000	Remove	bad	quotesLets	remove	some	errors	and	warnings	according	to	the	recommendations.	If	you	do	not	understand	why	the	linter	generates	an	error	I	recommend	to	refer	to	the	list	of	the	wemake-python-styleguide	violations.	There	you	will	find	the	links	to
the	violations	generated	by	different	integrated	plugins.	For	flake8	violations,	I	would	recommend	to	check	the	www.flake8rules.com	website.	There	you	can	read	about	different	flake8	violations.	In	order	to	do	this,	you	need	just	modify	the	URL	by	adding	the	name	of	the	error	to	the	end	of	the	path.	For	instance,	if	you	would	like	to	know	what	W503
error	means	you	have	to	open	the	following	link:	modifying	the	code	according	to	the	recommendations,	it	should	look	like	the	following:#	-*-	coding:	UTF-8	-*-"""Test	Module.Author:	Yury	ZhauniarovichDate	created:	04/04/2020"""import	osfrom	loguru	import	loggerdef	adder(i1,	i2):	"""This	function	adds	two	numbers."""	return	(i1	+	i2)def	main():
"""Main	function."""	logger.info('Cool	new_package	project!')	logger.info('We	are	here:	{0}'.format(os.path.abspath(__file__)))	logger.info('Adding	integers	{0}	and	{1}.	Result:	{2}'.format(	1,	2,	adder(1,	2),	))	logger.info('Adding	floats	{0}	and	{1}.	Result:	{2}'.format(	1.0,	2.0,	adder(1.0,	2.0),	))	logger.info('Adding	strings	{0}	and	{1}.	Result:
{2}'.format(	'1',	'2',	adder('1',	'2'),	))if	__name__	==	'__main__':	main()Additional	flake8	PluginsAlthough	the	wemake-python-styleguide	package	comes	with	a	number	of	good	flake8	plugins	there	is	always	a	room	for	improvement.	In	particular,	the	authors	of	the	wemake-python-styleguide	package	recommend	to	use	the	following	flake8
plugins:cohesion	to	measure	code	cohesion.dlint	to	ensure	Python	code	is	secure	and	ensure	best	coding	practices.Besides	these	plugins,	personally	I	would	recommend	also	to	check	the	following	ones:If	you	want	to	use	some	of	these	plugins	in	your	project,	just	install	them	as	development	dependencies	to	your	virtual	environment	using	poetry
(example	for	cohesion	and	dlint	plugins):$	poetry	add	--dev	cohesion	dlintThe	wemake-python-styleguide	package	is	under	active	development.	Therefore,	its	updates	may	change	the	list	of	the	integrated	flake8	plugins.	I	recommend	to	check	the	changelog	of	this	styleguide	regularly.I	would	like	also	to	recommend	the	awesome-flake8-extensions
repository	where	you	can	find	an	huge	list	of	different	flake8	plugins	that	can	be	added	as	well.Code	FormattingSome	of	the	errors	found	by	a	linter	could	be	automatically	corrected:	so-called	auto-formatters	can	take	this	task.	Personally,	as	a	Python	auto-formatter	I	use	autopep8.	There	are	two	reasons	for	this.	First,	this	auto-formatter	is	fully
compatible	with	the	wemake-python-styleguide.	Second,	it	allows	to	format	a	part	of	the	code	(select	the	code	you	would	like	to	format	and	press	Ctrl+K	Ctrl+F).	Other	auto-formatters,	e.g.,	black,	do	not	allow	you	to	do	that.In	order	to	use	this	auto-formatter,	you	need	to	set	the	auto-formatter	provider	(python.formatting.provider)	to	autopep8.	Also,
you	must	add	it	as	a	development	dependency	to	your	project:$	poetry	add	--dev	autopep8Type	CheckingIn	our	example,	there	is	a	function	adder	that	adds	two	numbers.	However,	so	as	Python	is	a	dynamically	typed	language	this	function	also	works	if	we	provide	two	strings	as	parameters.	In	this	case,	the	function	will	concatenate	these	two	strings.
This	behaviour	is	unusual	and	may	lead	to	a	bug.	In	order	to	add	more	patency,	Python	developers	have	started	to	use	type	annotations.To	check	these	annotations	the	mypy	tool	is	used.	To	enable	mypy	checks	in	VSCode	you	need	to	do	the	following	configuration.	First,	in	the	settings	(Ctrl+,),	change	python.linting.mypyEnabled	to	True	and	provide
the	path	to	the	mypy	executable	(mypy)	in	the	python.linting.mypyPath.	Second,	install	mypy	as	a	development	dependency:Now,	if	you	save	a	file	mypy	will	check	if	all	contracts	hold.	However,	for	our	example	it	would	not	generate	any	error.	The	issue	is	that	the	default	mypy	settings	are	quite	relaxed.	To	make	them	more	rigid,	add	the	following
lines	to	your	setup.cfg	(this	configuration	is	partially	taken	from	the	settings	of	the	wemake-python-package):[mypy]#	mypy	configurations:	=	src/,	tests/allow_redefinition	=	Falsecheck_untyped_defs	=	Truedisallow_any_explicit	=	Truedisallow_any_generics	=	Truedisallow_untyped_calls	=	Trueignore_errors	=	Falseignore_missing_imports	=
Trueimplicit_reexport	=	Falselocal_partial_types	=	Truestrict_optional	=	Truestrict_equality	=	Trueno_implicit_optional	=	Truewarn_no_return	=	Truewarn_unused_ignores	=	Truewarn_redundant_casts	=	Truewarn_unused_configs	=	Truewarn_unreachable	=	TrueNote	that	storing	the	code	of	a	package	in	the	src	directory	allows	me	to	copy	the	same
setup.cfg	from	one	project	to	another.	Now,	when	you	save	the	file	you	should	get	the	list	of	the	following	mypy	errors:src/new_package/main.py:27:	error:	Call	to	untyped	function	"adder"	in	typed	contextsrc/new_package/main.py:32:	error:	Call	to	untyped	function	"adder"	in	typed	contextsrc/new_package/main.py:37:	error:	Call	to	untyped	function
"adder"	in	typed	contextsrc/new_package/main.py:42:	error:	Call	to	untyped	function	"main"	in	typed	contextLets	annotate	our	adder	function	to	accept	only	numbers:def	adder(	i1:	Union[int,	float],	i2:	Union[int,	float],)	->	Union[int,	float]:	"""This	function	adds	two	numbers."""	return	(i1	+	i2)Now,	if	you	run	mypy	it	will	generate	an	error	for	the	line
where	we	try	to	add	two	strings.	Lets	remove	this	line	from	our	example.Testing	Python	CodeTesting	your	code	is	essential	if	you	plan	to	update	your	package	regularly.	Although,	I	am	only	in	the	beginning	of	my	Test	Driven	Development	(TDD)	journey	I	have	decided	to	describe	in	this	article	how	to	configure	VSCode	to	test	your	modules.	By	default,
when	you	create	a	project	using	poetry	it	adds	pytest	as	a	test	runner	and	creates	a	boilerplate	code	of	a	test	example.	Moreover,	pytest	assertions	seem	to	me	more	natural	therefore	I	prefer	this	framework.	So,	lets	configure	VSCode	to	use	this	test	runner.At	first,	lets	configure	VSCode	to	work	with	pytest.	In	order	to	do	this,	open	settings	(Ctrl+,)
and	enable	pytest:	set	python.testing.pytestEnabled	to	true.If	you	try	now	to	run	your	tests	in	Test	Explorer,	VSCode	would	generate	an	error	because	it	cannot	discover	them.	Similarly,	if	you	try	to	run	test	discovery	through	command	line	using	the	poetry	run	pytest	--collect-only	command,	pytest	would	generate	an	error	that	it	cannot	import	a
module.	This	issue	is	because	we	store	our	sources	in	the	src/	directory.	In	order	to	fix	this,	you	need	to	install	the	package	at	first	in	order	to	test	it.	Luckily,	you	can	do	this	just	with	one	command:If	you	store	the	code	in	the	src/	directory	as	I	do	and	as	some	Python	developers	recommend,	in	order	to	run	the	tests	you	need	to	install	this	package	at
first.If	you	store	your	code	in	src-less	layout	pytest	would	be	able	to	discover	the	tests	without	the	package	being	installed.In	order	to	speed	up	test	execution,	lets	install	the	pytest-xdist	package.	This	tool	is	able	to	distribute	tests	between	multiple	test	executors	thus,	they	can	be	run	on	multiple	CPU	cores	in	parallel:$	poetry	add	--dev	pytest-
xdistNow,	lets	add	some	settings	to	our	setup.cfg:[tool:pytest]#	search	for	tests	only	in	tests/	directorytestpaths	=	tests#	make	XPASS	(unexpectedly	passing)	result	to	fail	the	test	suitexfail_strict	=	trueaddopts	=	#	report	details	(verbose)	-v	#	xdist	-	number	of	parallel	test	executors	(auto	-	detect	automatically)	-n	auto	#	report	the	local	variables	for
every	failure	with	the	stacktrace	-l	#	report	the	reasons	for	all	tests	that	skipped,	xfailed,	or	xpassed	-rsxX	#	treat	unregistered	markers	as	errors	allowing	to	avoid	typos	--strict	#	short	traceback	format	--tb=short	#	execute	doctests	directly	from	docstrings	of	your	classes	and	functions	--doctest-modulesAfter	that,	you	should	be	able	to	run	your	tests
from	Test	Explorer	and	see	the	results	of	their	execution.Collecting	Code	CoverageLast	but	not	least,	lets	add	code	coverage	data	collection.	In	order	to	do	this,	we	have	to	install	the	pytest-cov	package	(as	a	dependency	it	has	the	coverage.py	package	that	collects	coverage	information):$	poetry	add	--dev	pytest-covLets	modify	our	setup.cfg	to	enable
pytest	to	collect	coverage	information	during	test	execution.	In	particular,	we	need	to	modify	the	[tool:pytest]	and	add	two	additional	sections:[tool:pytest]#	search	for	tests	only	in	tests/	directorytestpaths	=	tests#	make	XPASS	(unexpectedly	passing)	result	to	fail	the	test	suitexfail_strict	=	trueaddopts	=	#	report	details	(verbose)	-v	#	xdist	-	number
of	parallel	test	executors	-n	auto	#	report	the	local	variables	for	every	failure	with	the	stacktrace	-l	#	report	the	reasons	for	all	tests	that	skipped,	xfailed,	or	xpassed	-rsxX	#	treat	unregistered	markers	as	errors	allowing	to	avoid	typos	--strict	#	short	traceback	format	--tb=short	#	execute	doctests	directly	from	docstrings	of	your	classes	and	functions
--doctest-modules	#	coverage	--cov	#	generate	html	coverage	report	and	store	it	into	htmlcov	dir	--cov-report=html:htmlcov[coverage:run]#	directory	to	run	coverage	onsource	=	src/[coverage:report]#	do	not	consider	the	following	lines	during	coverage	calculationexclude_lines	=	#	Have	to	re-enable	the	standard	pragma	pragma:	no	cover	#	Don't
complain	about	missing	debug-only	code:	def	__repr__	if	self\.debug	#	Don't	complain	if	tests	don't	hit	defensive	assertion	code:	raise	AssertionError	raise	NotImplementedError	#	Don't	complain	if	non-runnable	code	isn't	run:	if	0:	if	__name__	==	.__main__.:Now,	if	you	run	your	tests	pytest	will	also	collect	code	coverage	information	and	put	it	in	the
html	format	to	the	htmlcov	directory.	If	you	need	reports	in	other	formats	you	can	modify	the	settings	accordingly.Final	ConfigurationFinally,	in	the	end	of	this	tutorial	your	setup.cfg	and	pyproject.toml	should	look	in	the	following	way:pyproject.toml[tool.poetry]name	=	""version	=	"0.1.0"description	=	""authors	=	["Author	Name	"]
[tool.poetry.dependencies]python	=	"^3.8"[tool.poetry.dev-dependencies]pytest	=	"^5.2"rope	=	"^0.16.0"wemake-python-styleguide	=	"^0.14.0"cohesion	=	"^1.0.0"dlint	=	"^0.10.3"flake8-pytest	=	"^1.3"flake8-pytest-style	=	"^1.0.0"flake8-coding	=	"^1.3.2"flake8-class-attributes-order	=	"^0.1.0"flake8-builtins	=	"^1.5.2"flake8-mutable	=
"^1.2.0"autopep8	=	"^1.5"mypy	=	"^0.770"pytest-xdist	=	"^1.31.0"pytest-cov	=	"^2.8.1"[build-system]requires	=	["poetry>=0.12"]build-backend	=	"poetry.masonry.api"setup.cfg[isort]#	isort	configuration:#	See	3	-	one	module	per	line	in	parenthesismulti_line_output	=	3#	if	the	trailing	comma	should	be	included	for	the	last
modulesinclude_trailing_comma	=	true#	where	to	put	unrecognized	importsdefault_section	=	FIRSTPARTY#	Should	be:	max_string_length	-	1line_length	=	79[flake8]#	Base	flake8	configuration:#	=	wemakeshow-source	=	Truestatistics	=	Falsedoctests	=	True#	Plugins:max-complexity	=	6max-line-length	=	80#	strings	are	in	single	or	double
quotes#	inline-quotes	=	double#	wemake-python-styleguide	settings:i-control-code	=	True#	Disable	some	pydocstyle	checks:#	Exclude	some	pydoctest	checks	globally:ignore	=	#	Missing	docstring	in	public	module	#	D100	#	Missing	docstring	in	public	package	#	D104	#	Missing	docstring	in	public	nested	class	#	D106	#	First	line	should	be	in
imperative	mood	D401	#	line	break	after	binary	operator	W504	#	per-file	ignoring	(better	to	live)	X100	#	Unknown	directive	type	"XXX".	RST303	#	Unknown	interpreted	text	role	"XXX".	RST304	#	Darglint	configuration	#	The	docstring	parameter	type	doesn't	match	function.	#	DAR103	#	The	docstring	parameter	type	doesn't	match	function.	#
DAR203#	Excluding	some	directories:exclude	=	.git	__pycache__	.venv	.eggs	*.egg	#	add	the	following	directories	.venv	.mypy_cache	.vscode#	Ignoring	some	errors	in	some	files:per-file-ignores	=	#	Enable	`assert`	keyword	and	magic	numbers	for	tests:	tests/*.py:	S101,	WPS226,	WPS432[darglint]#	darglint	configuration:#	=	long[mypy]#	mypy
configurations:	=	src/,	tests/allow_redefinition	=	Falsecheck_untyped_defs	=	Truedisallow_any_explicit	=	Truedisallow_any_generics	=	Truedisallow_untyped_calls	=	Trueignore_errors	=	Falseignore_missing_imports	=	Trueimplicit_reexport	=	Falselocal_partial_types	=	Truestrict_optional	=	Truestrict_equality	=	Trueno_implicit_optional	=
Truewarn_no_return	=	Truewarn_unused_ignores	=	Truewarn_redundant_casts	=	Truewarn_unused_configs	=	Truewarn_unreachable	=	True[tool:pytest]#	search	for	tests	only	in	tests/	directorytestpaths	=	tests#	make	XPASS	(unexpectedly	passing)	result	to	fail	the	test	suitexfail_strict	=	trueaddopts	=	#	report	details	(verbose)	-v	#	xdist	-	number
of	parallel	test	executors	-n	auto	#	report	the	local	variables	for	every	failure	with	the	stacktrace	-l	#	report	the	reasons	for	all	tests	that	skipped,	xfailed,	or	xpassed	-rsxX	#	treat	unregistered	markers	as	errors	allowing	to	avoid	typos	--strict	#	short	traceback	format	--tb=short	#	execute	doctests	directly	from	docstrings	of	your	classes	and	functions
--doctest-modules	#	coverage	--cov	#	generate	html	coverage	report	and	store	it	into	htmlcov	dir	--cov-report=html:htmlcov[coverage:run]#	directory	to	run	coverage	onsource	=	src/[coverage:report]#	do	not	consider	the	following	lines	during	coverage	calculationexclude_lines	=	#	Have	to	re-enable	the	standard	pragma	pragma:	no	cover	#	Don't
complain	about	missing	debug-only	code:	def	__repr__	if	self\.debug	#	Don't	complain	if	tests	don't	hit	defensive	assertion	code:	raise	AssertionError	raise	NotImplementedError	#	Don't	complain	if	non-runnable	code	isn't	run:	if	0:	if	__name__	==	.__main__.:Of	course,	with	the	lapse	of	time	the	versions	of	the	dependencies	would	expire.	You	would
need	to	update	them	from	time	to	time.	You	could	also	replace	the	version	number	with	a	wildcard	so	that,	when	you	copy	the	pyproject.toml	file	to	a	new	package,	poetry	automatically	picks	the	latest	available	dependencies	versions	and	lock	them	for	your	project.Besides	the	tools	we	have	considered	so	far	that	can	be	integrated	with	VSCode,	I
recommend	you	to	check	the	following	that	can	also	improve	the	quality	of	your	Python	package:vulture	to	find	the	dead	code.import-linter	to	enforce	rules	for	the	internal	and	external	imports.safety	checks	if	there	is	a	vulnerability	in	a	dependency.They	all	can	be	run	from	command	line	and	report	on	potential	issues.	Besides	them,	I	would	like	to
highlight	the	pre-commit	tool	staying	aside.	It	is	used	to	develop	hook	scripts	that	are	run	before	a	commit	or	a	push	to	projects	git	repository.	This	functionality	can	be	used	to	run	all	the	checks	considered	so	far	automatically	before	a	commit	or	a	push.	This	can	be	very	useful,	for	instance,	if	your	project	is	big,	and	running	all	the	checks	after	every
save	operation	may	cause	unnecessary	delays.	You	can	read	this	article	in	order	to	understand	how	to	integrate	this	tool.ConclusionIn	this	article,	I	have	considered	how	to	configure	your	VSCode	for	Python	development.	So	as	Python	world	is	quite	diverse,	you	may	use	other	tools	in	your	projects.	However,	I	hope	that	using	the	information	from	this
article	would	help	you	to	integrate	them	as	well.	Watch	Now	This	tutorial	has	a	related	video	course	created	by	the	Real	Python	team.	Watch	it	together	with	the	written	tutorial	to	deepen	your	understanding:	Python	Development	in	Visual	Studio	Code	(Setup	Guide)	One	of	the	coolest	code	editors	available	to	programmers,	Visual	Studio	Code,	is	an
open-source,	extensible,	light-weight	editor	available	on	all	platforms.	Its	these	qualities	that	make	Visual	Studio	Code	from	Microsoft	very	popular,	and	a	great	platform	for	Python	development.In	this	article,	youll	learn	about	Python	development	in	Visual	Studio	Code,	including	how	to:Install	Visual	Studio	CodeDiscover	and	install	extensions	that
make	Python	development	easyWrite	a	straightforward	Python	applicationLearn	how	to	run	and	debug	existing	Python	programs	in	VS	CodeConnect	Visual	Studio	Code	to	Git	and	GitHub	to	share	your	code	with	the	worldWe	assume	you	are	familiar	with	Python	development	and	already	have	some	form	of	Python	installed	on	your	system	(Python	2.7,
Python	3.6/3.7,	Anaconda,	or	others).	Screenshots	and	demos	for	Ubuntu	and	Windows	are	provided.	Because	Visual	Studio	Code	runs	on	all	major	platforms,	you	may	see	slightly	different	UI	elements	and	may	need	to	modify	certain	commands.If	you	already	have	a	basic	VS	Code	setup	and	youre	hoping	to	dig	deeper	than	the	goals	in	this	tutorial,
you	might	want	to	explore	some	advanced	features	in	VS	Code.Free	Bonus:	5	Thoughts	On	Python	Mastery,	a	free	course	for	Python	developers	that	shows	you	the	roadmap	and	the	mindset	youll	need	to	take	your	Python	skills	to	the	next	level.Installing	Visual	Studio	Code	is	very	accessible	on	any	platform.	Full	instructions	for	Windows,	Mac,	and
Linux	are	available,	and	the	editor	is	updated	monthly	with	new	features	and	bug	fixes.	You	can	find	everything	at	the	Visual	Studio	Code	website:	In	case	you	were	wondering,	Visual	Studio	Code	(or	VS	Code	for	short)	shares	almost	nothing	other	than	a	name	with	its	larger	Windows-based	namesake,	Visual	Studio.Note:	To	learn	how	to	set	up	VS
Code	as	part	of	a	full	Python	coding	environment	on	a	Windows	machine,	check	out	this	comprehensive	guide.Visual	Studio	Code	has	built-in	support	for	multiple	languages	and	an	extension	model	with	a	rich	ecosystem	of	support	for	others.	VS	Code	is	updated	monthly,	and	you	can	keep	up	to	date	at	the	Microsoft	Python	blog.	Microsoft	even	makes
the	VS	Code	GitHub	repo	available	for	anyone	to	clone	and	contribute.	(Cue	the	PR	flood.)The	VS	Code	UI	is	well	documented,	so	I	wont	rehash	it	here:As	stated	above,	VS	Code	supports	development	in	multiple	programming	languages	through	a	well-documented	extension	model.	The	Python	extension	enables	Python	development	in	Visual	Studio
Code,	with	the	following	features:	Visual	Studio	Code	extensions	cover	more	than	just	programming	language	capabilities:	Here	are	some	other	extensions	and	settings	I	find	useful:GitLens	provides	tons	of	useful	Git	features	directly	in	your	editing	window,	including	blame	annotations	and	repository	exploration	features.Auto	save	is	easily	turned	on
by	selecting	File,	Auto	Save	from	the	menu.	The	default	delay	time	is	1000	milliseconds,	which	is	also	configurable.Settings	Sync	allows	you	to	synchronize	your	VS	Code	settings	across	different	installations	using	GitHub.	If	you	work	on	different	machines,	this	helps	keep	your	environment	consistent	across	them.Docker	lets	you	quickly	and	easily
work	with	Docker,	helping	author	Dockerfile	and	docker-compose.yml,	package	and	deploy	your	projects,	and	even	generate	the	proper	Docker	files	for	your	project.Of	course,	you	may	discover	other	useful	extensions	as	you	use	VS	Code.	Please	share	your	discoveries	and	settings	in	the	comments!Discovering	and	installing	new	extensions	and
themes	is	accessible	by	clicking	on	the	Extensions	icon	on	the	Activity	Bar.	You	can	search	for	extensions	using	keywords,	sort	the	results	numerous	ways,	and	install	extensions	quickly	and	easily.	For	this	article,	install	the	Python	extension	by	typing	python	in	the	Extensions	item	on	the	Activity	Bar,	and	clicking	Install:	You	can	find	and	install	any	of
the	extensions	mentioned	above	in	the	same	manner.One	important	thing	to	mention	is	that	Visual	Studio	Code	is	highly	configurable	through	user	and	workspace	settings.User	settings	are	global	across	all	Visual	Studio	Code	instances,	while	workspace	settings	are	local	to	the	specific	folder	or	project	workspace.	Workspace	settings	give	VS	Code
tons	of	flexibility,	and	I	call	out	workspace	settings	throughout	this	article.	Workspace	settings	are	stored	as	.json	files	in	a	folder	local	to	the	project	workspace	called	.vscode.Lets	start	our	exploration	of	Python	development	in	Visual	Studio	Code	with	a	new	Python	program.	In	VS	Code,	type	Ctrl+N	to	open	a	new	File.	(You	can	also	select	File,	New
from	the	menu.)Note:	The	Visual	Studio	Code	UI	provides	the	Command	Palette,	from	which	you	can	search	and	execute	any	command	without	leaving	the	keyboard.	Open	the	Command	Palette	using	Ctrl+Shift+P,	type	File:	New	File,	and	hit	Enter	to	open	a	new	file.No	matter	how	you	get	there,	you	should	see	a	VS	Code	window	that	looks	similar	to
the	following:	Once	a	new	file	is	opened,	you	can	begin	entering	code.For	our	test	code,	lets	quickly	code	up	the	Sieve	of	Eratosthenes	(which	finds	all	primes	less	than	a	given	number).	Begin	typing	the	following	code	in	the	new	tab	you	just	opened:	You	should	see	something	similar	to	this:	Wait,	whats	going	on?	Why	isnt	Visual	Studio	Code	doing
any	keyword	highlighting,	any	auto-formatting,	or	anything	really	helpful?	What	gives?The	answer	is	that,	right	now,	VS	Code	doesnt	know	what	kind	of	file	its	dealing	with.	The	buffer	is	called	Untitled-1,	and	if	you	look	in	the	lower	right	corner	of	the	window,	youll	see	the	words	Plain	Text.To	activate	the	Python	extension,	save	the	file	(by	selecting
File,	Save	from	the	menu,	File:Save	File	from	the	Command	Palette,	or	just	using	Ctrl+S)	as	sieve.py.	VS	Code	will	see	the	.py	extension	and	correctly	interpret	the	file	as	Python	code.	Now	your	window	should	look	like	this:	Thats	much	better!	VS	Code	automatically	reformats	the	file	as	Python,	which	you	can	verify	by	inspecting	the	language	mode
in	the	lower	left	corner.If	you	have	multiple	Python	installations	(like	Python	2.7,	Python	3.x,	or	Anaconda),	you	can	change	which	Python	interpreter	VS	Code	uses	by	clicking	the	language	mode	indicator,	or	selecting	Python:	Select	Interpreter	from	the	Command	Palette.	VS	Code	supports	formatting	using	pep8	by	default,	but	you	can	select	black	or
yapf	if	you	wish.	Lets	add	the	rest	of	the	Sieve	code	now.	To	see	IntelliSense	at	work,	type	this	code	directly	rather	than	cut	and	paste,	and	you	should	see	something	like	this:	Heres	the	full	code	for	a	basic	Sieve	of	Eratosthenes:	As	you	type	this	code,	VS	Code	automatically	indents	the	lines	under	for	and	if	statements	for	you	properly,	adds	closing
parentheses,	and	makes	suggestions	for	you.	Thats	the	power	of	IntelliSense	working	for	you.Now	that	the	code	is	complete,	you	can	run	it.	There	is	no	need	to	leave	the	editor	to	do	this:	Visual	Studio	Code	can	run	this	program	directly	in	the	editor.	Save	the	file	(using	Ctrl+S),	then	right-click	in	the	editor	window	and	select	Run	Python	File	in
Terminal:	You	should	see	the	Terminal	pane	appear	at	the	bottom	of	the	window,	with	your	code	output	showing.You	may	have	seen	a	pop	up	appear	while	you	were	typing,	stating	that	linting	was	not	available.	You	can	quickly	install	linting	support	from	that	pop	up,	which	defaults	to	PyLint.	VS	Code	also	supports	other	linters.	Heres	the	complete	list
at	the	time	of	this	writing:pylintflake8mypypydocstylepep8prospectorpyllamabanditThe	Python	linting	page	has	complete	details	on	how	to	setup	each	linter.Note:	The	choice	of	linter	is	a	project	workspace	setting,	and	not	a	global	user	setting.In	the	Sieve	of	Eratosthenes	example,	you	created	a	single	Python	file.	Thats	great	as	an	example,	but	many
times,	youll	create	larger	projects	and	work	on	them	over	a	longer	period	of	time.	A	typical	new	project	work	flow	might	look	like	this:Create	a	folder	to	hold	the	project	(which	may	include	a	new	GitHub	project)Change	to	the	new	folderCreate	the	initial	Python	code	using	the	command	code	filename.pyUsing	Visual	Studio	Code	on	a	Python	project
(as	opposed	to	a	single	Python	file)	opens	up	tons	more	functionality	that	lets	VS	Code	truly	shine.	Lets	take	a	look	at	how	it	works	with	a	larger	project.Late	in	the	previous	millennium,	when	I	was	a	much	younger	programmer,	I	wrote	a	calculator	program	that	parsed	equations	written	in	infix	notation,	using	an	adaptation	of	Edsger	Dijkstras
shunting	yard	algorithm.To	demonstrate	the	project-focused	features	of	Visual	Studio	Code,	I	began	recreating	the	shunting	yard	algorithm	as	an	equation	evaluation	library	in	Python.	To	continue	following	along,	feel	free	to	clone	the	repo	locally.Once	the	folder	is	created	locally,	you	can	open	the	entire	folder	in	VS	Code	quickly.	My	preferred
method	(as	mentioned	above)	is	modified	as	follows,	since	I	already	have	the	folder	and	basic	files	created:	VS	Code	understands,	and	will	use,	any	virtualenv,	pipenv,	or	conda	environments	it	sees	when	opened	this	way.	You	dont	even	need	to	start	the	virtual	environment	first!	You	can	even	open	a	folder	from	the	UI,	using	File,	Open	Folder	from	the
menu,	Ctrl+K,	Ctrl+O	from	the	keyboard,	or	File:Open	Folder	from	the	Command	Palette.For	my	equation	eval	library	project,	heres	what	I	see:	When	Visual	Studio	Code	opens	the	folder,	it	also	opens	the	files	you	last	had	opened.	(This	is	configurable.)	You	can	open,	edit,	run,	and	debug	any	file	listed.	The	Explorer	view	in	the	Activity	Bar	on	the	left
gives	you	a	view	of	all	the	files	in	the	folder	and	shows	how	many	unsaved	files	exist	in	the	current	set	of	tabs.VS	Code	can	automatically	recognize	existing	Python	tests	written	in	the	unittest	framework,	or	the	pytest	or	Nose	frameworks	if	those	frameworks	are	installed	in	the	current	environment.	I	have	a	unit	test	written	in	unittest	for	the	equation
eval	library,	which	you	can	use	for	this	example.To	run	your	existing	unit	tests,	from	any	Python	file	in	the	project,	right-click	and	select	Run	Current	Unit	Test	File.	Youll	be	prompted	to	specify	the	test	framework,	where	in	the	project	to	search	for	tests,	and	the	filename	pattern	your	tests	utilize.All	of	these	are	saved	as	workspace	settings	in	your
local	.vscode/settings.json	file	and	can	be	modified	there.	For	this	equation	project,	you	select	unittest,	the	current	folder,	and	the	pattern	*_test.py.Once	the	test	framework	is	set	up	and	the	tests	have	been	discovered,	you	can	run	all	your	tests	by	clicking	Run	Tests	on	the	Status	Bar	and	selecting	an	option	from	the	Command	Palette:	You	can	even
run	individual	tests	by	opening	the	test	file	in	VS	Code,	clicking	Run	Tests	on	the	Status	Bar,	and	selecting	the	Run	Unit	Test	Method	and	the	specific	test	to	run.	This	makes	it	trivial	to	address	individual	test	failures	and	re-run	only	failed	tests,	which	is	a	huge	time-saver!	Test	results	are	shown	in	the	Output	pane	under	Python	Test	Log.Even	though
VS	Code	is	a	code	editor,	debugging	Python	directly	within	VS	Code	is	possible.	VS	Code	offers	many	of	the	features	you	would	expect	from	a	good	code	debugger,	including:Automatic	variable	trackingWatch	expressionsBreakpointsCall	stack	inspectionYou	can	see	them	all	as	part	of	the	Debug	view	on	the	Activity	Bar:	The	debugger	can	control
Python	apps	running	in	the	built-in	terminal	or	an	external	terminal	instance.	It	can	attach	to	an	already	running	Python	instances,	and	can	even	debug	Django	and	Flask	apps.Debugging	code	in	a	single	Python	file	is	as	simple	as	starting	the	debugger	using	F5.	You	use	F10	and	F11	to	step	over	and	into	functions	respectively,	and	Shift+F5	to	exit	the
debugger.	Breakpoints	are	set	using	F9,	or	using	the	mouse	by	clicking	in	the	left	margin	in	the	editor	window.Before	you	start	debugging	more	complicated	projects,	including	Django	or	Flask	applications,	you	need	to	setup	and	then	select	a	debug	configuration.	Setting	up	the	debug	configuration	is	relatively	straightforward.	From	the	Debug	view,
select	the	Configuration	drop-down,	then	Add	Configuration,	and	select	Python:	Visual	Studio	Code	will	create	a	debug	configuration	file	under	the	current	folder	called	.vscode/launch.json,	which	allows	you	to	setup	specific	Python	configurations	as	well	as	settings	for	debugging	specific	apps,	like	Django	and	Flask.You	can	even	perform	remote
debugging,	and	debug	Jinja	and	Django	templates.	Close	the	launch.json	file	in	the	editor	and	select	the	proper	configuration	for	your	application	from	the	Configuration	drop-down.VS	Code	has	built-in	support	for	source	control	management,	and	ships	with	support	for	Git	and	GitHub	right	out	of	the	box.	You	can	install	support	for	other	SCMs	in	VS
Code,	and	use	them	side	by	side.	Source	control	is	accessible	from	the	Source	Control	view:	If	your	project	folder	contains	a	.git	folder,	VS	Code	automatically	turns	on	the	full	range	of	Git/GitHub	functionality.	Here	are	some	of	the	many	tasks	you	can	perform:	All	of	this	functionality	is	available	directly	from	the	VS	Code	UI:	VS	Code	will	also
recognize	changes	made	outside	the	editor	and	behave	appropriately.Committing	your	recent	changes	within	VS	Code	is	a	fairly	straightforward	process.	Modified	files	are	shown	in	the	Source	Control	view	with	an	M	marker,	while	new	untracked	files	are	marked	with	a	U.	Stage	your	changes	by	hovering	over	the	file	and	then	clicking	the	plus	sign
(+).	Add	a	commit	message	at	the	top	of	the	view,	and	then	click	the	check	mark	to	commit	the	changes:	You	can	push	local	commits	to	GitHub	from	within	VS	Code	as	well.	Select	Sync	from	the	Source	Control	view	menu,	or	click	Synchronize	Changes	on	the	status	bar	next	to	the	branch	indicator.Visual	Studio	Code	is	one	of	the	coolest	general
purpose	editors	and	a	great	candidate	for	Python	development.	In	this	article,	you	learned:How	to	install	VS	Code	on	any	platformHow	to	find	and	install	extensions	to	enable	Python-specific	featuresHow	VS	Code	makes	writing	a	simple	Python	application	easierHow	to	run	and	debug	existing	Python	programs	within	VS	CodeHow	to	work	with	Git	and
GitHub	repositories	from	VS	CodeVisual	Studio	Code	has	become	my	default	editor	for	Python	and	other	tasks,	and	I	hope	you	give	it	a	chance	to	become	yours	as	well.If	you	have	questions	or	comments,	please	reach	out	in	the	comments	below.	There	is	also	a	lot	more	information	at	the	Visual	Studio	Code	website	than	we	could	cover	here.The
author	sends	thanks	to	Dan	Taylor	from	the	Visual	Studio	Code	team	at	Microsoft	for	his	time	and	invaluable	input	in	this	article.	Watch	Now	This	tutorial	has	a	related	video	course	created	by	the	Real	Python	team.	Watch	it	together	with	the	written	tutorial	to	deepen	your	understanding:	Python	Development	in	Visual	Studio	Code	(Setup	Guide)	This
post	is	a	guide	to	help	you	create	a	new	Python	project	with	its	own	virtual	environment	using	VSCode/VSCodium	and	GitHub.	Introduction	This	guide	aims	to	assist	you	in	setting	up	a	Python	project	with	its	own	virtual	environment	using	VSCode/VSCodium	and	GitHub.The	goal	is	not	to	go	into	exhaustive	details	of	the	tools,	but	to	provide	a	quick
start	to	create	a	new	Python	project	and	manage	it	with	Git.I	strongly	recommend	to	use	Git	even	when	working	alone,	as	it	helps	in	tracking	changes	and	provides	a	backup	of	your	code.You	wouldnt	want	to	lose	weeks	of	work	due	to	a	computer	crash!	First,	ensure	you	have	the	following	installed:	Git	Python	VSCode	or	VSCodium	Alternatives	exist
for	each	of	these	tools.	For	the	code	editor,	PyCharm,	Vim,	Neovim,	Emacs,	or	many	others	can	be	used.However,	tools	with	features	like	syntax	highlighting,	code	completion,	linting,	git	integration,	and	debugging	capabilities	are	preferred.PyCharm	comes	with	a	lot	of	features	out	of	the	box,	VSCode/VSCodium	will	require	some	extensions,
Vim/NeoVim	and	Emacs	will	require	a	lot	of	configuration	and	time	to	learn	the	basics	and	to	obtain	the	same	features	as	the	other	tools.Personally,	I	use	VSCode	because	I	can	easily	switch	between	Python,	C++,	and	other	languages	without	having	to	spend	a	lot	of	time	configuring	it.	For	version	control,	GitLab,	Bitbucket,	or	other	alternatives	can
also	be	used.	For	managing	Python	environments,	this	guide	utilizes	the	built-in	venv	module.	Alternatives	like	virtualenv,	conda,	or	poetry	exist.Personally,	I	use	venv	because	it	is	built-in	and	easy	to	use.	Other	resources	such	as	The	Hitchhikers	Guide	to	Python,	Real	Python,	or	Python.org	to	learn	more	about	Python,	its	ecosystem,	and	best	practices
(how	to	structure	your	project,	how	to	write	tests,	how	to	document	your	code,	etc.).There	are	also	a	lot	of	tools	to	help	you	organize	your	project	and	write	better	and	cleaner	code	:	Black	for	code	formatting.	Mypy	for	static	type	checking.	Pylint	for	linting.	Isort	for	import	sorting.	Ruff	for	linting	and	code	formatting.	CookieCutter	for	project
templating.	and	many	others	Installing	VSCode	Python	extensions	Open	VSCode.	On	the	left,	click	on	the	Extensions	icon	(four	squares	icon).	Search	for	Python	and	install	the	Python	Extension	Pack.	You	can	also	install	other	extensions	like	Black	Formatter,	Python	Type	Hint,	or	Pylint.	You	can	search	for	other	extensions	that	you	might	find	useful.
Creating	a	new	repository	on	github	Log	in	to	GitHub.	Click	on	the	New	button	(green	on	the	top	left).	Choose	a	name	for	your	repository	(e.g.	my_project),	add	a	description,	and	configure	privacy	settings	(public	or	private,	you	can	change	it	later).	Check	Add	a	README	file	and	add	a	gitignore	file	for	Python.	Select	the	license	you	want	to	use	(e.g.
MIT).	Click	on	Create	repository.	Your	new	repository	is	now	set	up	on	GitHub.	Cloning	the	repository	on	your	computer	through	VSCode	In	VSCode,	open	the	command	palette	(Ctrl+Shift+P	on	Linux),	type	git	clone,	and	select	Git:	Clone.	Choose	Clone	from	github.	Enter	your	github	credentials.	Select	the	repository	you	want	to	clone	(e.g.
your_github_name/my_project,	it	should	be	the	first	one	in	the	list).	Choose	a	local	folder	for	cloning	(this	will	create	a	new	folder	with	the	name	of	your	repository	inside	the	selected	folder).	You	have	now	cloned	the	repository	on	your	computer.	VSCode	will	ask	you	if	you	want	to	open	the	repository,	click	on	Open.	You	have	now	opened	the
repository	in	VSCode.You	can	see	the	README.md,	.gitignore,	and	LICENSE	files	in	the	Explorer	on	the	left.	You	can	then	create	files	and	add	send	them	to	the	repository	with	git.Look	at	this	video	tutorial	to	learn	how	to	use	git	in	VSCode	(staging,	committing,	pushing,	pulling,	etc.).It	is	also	possible	to	create	the	repository	locally	then	publish	it	on
github.I	proposed	to	do	it	from	github	because	it	comes	directly	with	a	README.md,	a	gitignore	file,	and	a	license	file.	Creating	a	Python	environment	Open	the	terminal	in	VSCode	(On	the	top	menu,	click	on	Terminal	->	New	Terminal,	the	shortcut	should	be	indicated	here).	Check	the	path	to	the	python	interpreter	path	you	are	currently	using	with
which	python3,	probably	/usr/bin/python3.xx.	Create	a	virtual	environment	in	a	venv	folder	with	python3	-m	venv	venv,	you	can	specify	the	exact	python	version	by	using	python3.11	or	python3.12	depending	on	the	version	installed	on	your	computer.	Activate	the	virtual	environment	with	the	command	:	source	venv/bin/activate	(on	Windows,	the
command	should	be	venv\Scripts\activate).	You	should	see	(venv)	at	the	beginning	of	the	command	line,	this	means	you	are	now	using	the	python	interpreter	from	the	virtual	environment.	Check	the	path	to	the	python	interpreter	path	you	are	currently	using	with	which	python3,	the	result	should	be	/path_to_current_directory/venv/bin/python3.	This
means	you	are	using	the	python	interpreter	from	the	virtual	environment,	installing	packages	with	pip	will	install	them	in	this	virtual	environment	and	not	in	the	system	python.	You	can	upgrade	pip	with	the	command	:	pip	install	--upgrade	pip.	You	can	now	install	the	dependencies	of	your	project	with	pip.If	you	want	to	install	a	package,	for	example
black,	you	can	do	it	with	the	command	pip	install	black.	The	package	will	be	installed	in	the	virtual	environment.But	if	you	only	use	pip	install	package	and	someone	else	clones	your	repository,	they	will	not	have	the	package	installed	as	the	virtual	environment	is	not	committed	to	the	repository	(it	is	in	the	.gitignore	file,	see	this	stackoverflow	question
for	more	information	on	this	topic).To	avoid	this,	you	can	create	a	requirements.txt	file	with	the	command	pip	freeze	>	requirements.txt	and	commit	it	to	your	repository.This	file	will	list	all	the	dependencies	of	your	project	and	their	versions,	for	tools	like	black	or	mypy	that	you	normally	dont	directly	use	in	your	code,	you	can	remove	the	version
number	to	install	the	latest	version,	but	for	libraries	that	you	use	in	your	code,	it	is	better	to	specify	the	version	number.You	can	then	install	the	dependencies	with	the	command	pip	install	-r	requirements.txt.	In	the	README.md	file,	you	can	add	a	section	Install	dependencies	with	the	commands	to	create	the	virtual	environment	and	install	the
dependencies.	Coding!	You	can	now	start	coding	your	project.You	can	take	a	look	at	the	section	on	the	structure	of	a	project	on	the	hitchhikers	guide	to	python	to	have	an	idea	on	how	to	organize	your	project.	After	few	minutes	of	coding	(or	seconds	if	you	are	very	efficient!),	you	will	probably	have	some	bugs	in	your	code.You	can	use	the	debugger	of
VSCode	to	help	you	find	and	fix	them.The	docs	on	debugging	python	in	VSCode	should	help	you	to	get	started	with	the	debugger.	Visual	Studio	Code	(VS	Code)	is	a	powerful,	open-source	code	editor	that	supports	multiple	programming	languages,	including	Python.	In	this	guide,	we	will	walk	through	the	steps	to	create	your	first	Python	project	in	VS
Code,	covering	everything	from	installation	to	running	your	code.	Lets	dive	in!Setting	Up	Your	EnvironmentThe	first	step	to	creating	a	Python	project	in	Visual	Studio	Code	is	to	ensure	you	have	the	right	environment	set	up.	This	involves	installing	Python	and	the	necessary	extensions	in	VS	Code.Installing	PythonTo	run	Python	code,	you	need	to	have
Python	installed	on	your	machine.	Follow	these	steps:Visit	the	official	Python	website.Download	the	latest	version	of	Python	for	your	operating	system.Follow	the	installation	instructions	provided	on	the	website.Installing	Visual	Studio	CodeIf	you	havent	installed	Visual	Studio	Code	yet,	you	can	download	it	from	the	official	VS	Code	website.	Follow	the
installation	prompts	for	your	operating	system.Creating	Your	Project	FolderOnce	you	have	Python	and	VS	Code	installed,	you	can	start	creating	your	Python	project.Open	Visual	Studio	Code.Click	on	the	Open	Folder	button	or	go	to	File	>	Open	Folder.Create	a	new	folder	for	your	project,	for	example,	my_first_py_project,	and	select	it.Creating	Your
First	Python	FileNow	that	your	project	folder	is	set	up,	lets	create	a	Python	file.In	the	Explorer	view,	right-click	on	your	project	folder	and	select	New	File.Name	your	file	main.py.Writing	Your	First	Python	CodeOpen	your	main.py	file	and	type	the	following	code:print("Hello,	World!")To	save	your	file,	press	Ctrl	+	S.Installing	the	Python	ExtensionTo
effectively	run	and	debug	Python	code	in	VS	Code,	you	need	to	install	the	Python	extension	provided	by	Microsoft.Click	on	the	Extensions	icon	in	the	Activity	Bar	on	the	side	of	the	window	or	press	Ctrl	+	Shift	+	X.Search	for	Python	in	the	Extensions	Marketplace.Click	on	the	Python	extension	by	Microsoft	and	then	click	Install.Running	Your	Python
CodeOnce	the	extension	is	installed,	you	can	run	your	Python	code	directly	from	VS	Code.Open	the	terminal	by	going	to	Terminal	>	New	Terminal.In	the	terminal,	type	the	following	command	to	run	your	Python	file:python	main.pyThis	command	will	execute	your	script,	and	you	should	see	Hello,	World!	printed	in	the	terminal.Using	the	Run	ButtonTo
make	running	your	code	even	easier,	you	can	use	the	run	button	that	appears	in	the	top	right	corner	of	the	editor	once	the	Python	extension	is	installed.Simply	click	the	play	button	(run	button)	to	execute	your	code	without	opening	the	terminal	manually.Creating	Additional	Python	FilesAs	you	expand	your	project,	you	may	want	to	create	additional
Python	files.	You	can	repeat	the	steps	to	create	a	new	file,	for	example,	main2.py,	and	write	a	simple	print	statement:print("Hello	from	main2!")Run	it	the	same	way	you	did	with	main.py.ConclusionCongratulations!	Youve	successfully	set	up	your	first	Python	project	in	Visual	Studio	Code.	You	learned	how	to	create	a	project	folder,	write	Python	code,
install	necessary	extensions,	and	run	your	code	efficiently.	If	you	have	any	questions,	feel	free	to	leave	them	in	the	comments	below!For	more	tutorials	and	resources,	you	can	check	out	supporting	my	work	or	visit	my	YouTube	channel	In	this	tutorial,	you	will	learn	how	to	use	Python	3	in	Visual	Studio	Code	to	create,	run,	and	debug	a	Python	"Roll	a
dice!"	application,	work	with	virtual	environments,	use	packages,	and	more!	By	using	the	Python	extension,	you	turn	VS	Code	into	a	great,	lightweight	Python	editor.If	you	are	new	to	programming,	check	out	the	Visual	Studio	Code	for	Education	-	Introduction	to	Python	course.	This	course	offers	a	comprehensive	introduction	to	Python,	featuring
structured	modules	in	a	ready-to-code	browser-based	development	environment.To	gain	a	deeper	understanding	of	the	Python	language,	you	can	explore	any	of	the	programming	tutorials	listed	on	python.org	within	the	context	of	VS	Code.For	a	Data	Science	focused	tutorial	with	Python,	check	out	our	Data	Science	section.PrerequisitesTo	successfully
complete	this	tutorial,	you	need	to	first	set	up	your	Python	development	environment.	Specifically,	this	tutorial	requires:	Install	a	Python	interpreterAlong	with	the	Python	extension,	you	need	to	install	a	Python	interpreter.	Which	interpreter	you	use	is	dependent	on	your	specific	needs,	but	some	guidance	is	provided	below.WindowsInstall	Python	from
python.org.	Use	the	Download	Python	button	that	appears	first	on	the	page	to	download	the	latest	version.Note:	If	you	don't	have	admin	access,	an	additional	option	for	installing	Python	on	Windows	is	to	use	the	Microsoft	Store.	The	Microsoft	Store	provides	installs	of	supported	Python	versions.For	additional	information	about	using	Python	on
Windows,	see	Using	Python	on	Windows	at	Python.orgmacOSThe	system	install	of	Python	on	macOS	is	not	supported.	Instead,	a	package	management	system	like	Homebrew	is	recommended.	To	install	Python	using	Homebrew	on	macOS	use	brew	install	python3	at	the	Terminal	prompt.Note:	On	macOS,	make	sure	the	location	of	your	VS	Code
installation	is	included	in	your	PATH	environment	variable.	See	these	setup	instructions	for	more	information.LinuxThe	built-in	Python	3	installation	on	Linux	works	well,	but	to	install	other	Python	packages	you	must	install	pip	with	get-pip.py.Other	optionsData	Science:	If	your	primary	purpose	for	using	Python	is	Data	Science,	then	you	might
consider	a	download	from	Anaconda.	Anaconda	provides	not	just	a	Python	interpreter,	but	many	useful	libraries	and	tools	for	data	science.Windows	Subsystem	for	Linux:	If	you	are	working	on	Windows	and	want	a	Linux	environment	for	working	with	Python,	the	Windows	Subsystem	for	Linux	(WSL)	is	an	option	for	you.	If	you	choose	this	option,	you'll
also	want	to	install	the	WSL	extension.	For	more	information	about	using	WSL	with	VS	Code,	see	VS	Code	Remote	Development	or	try	the	Working	in	WSL	tutorial,	which	will	walk	you	through	setting	up	WSL,	installing	Python,	and	creating	a	Hello	World	application	running	in	WSL.Note:	To	verify	that	you've	installed	Python	successfully	on	your
machine,	run	one	of	the	following	commands	(depending	on	your	operating	system):Linux/macOS:	open	a	Terminal	Window	and	type	the	following	command:python3	--versionWindows:	open	a	command	prompt	and	run	the	following	command:py	-3	--versionIf	the	installation	was	successful,	the	output	window	should	show	the	version	of	Python	that
you	installed.Alternatively,	you	can	use	the	py	-0	command	in	the	VS	Code	integrated	terminal	to	view	the	versions	of	python	installed	on	your	machine.	The	default	interpreter	is	identified	by	an	asterisk	(*).Start	VS	Code	in	a	workspace	folderBy	starting	VS	Code	in	a	folder,	that	folder	becomes	your	"workspace".Using	a	command	prompt	or	terminal,
create	an	empty	folder	called	"hello",	navigate	into	it,	and	open	VS	Code	(code)	in	that	folder	(.)	by	entering	the	following	commands:mkdir	hellocd	hellocode	.Note:	If	you're	using	an	Anaconda	distribution,	be	sure	to	use	an	Anaconda	command	prompt.Alternately,	you	can	create	a	folder	through	the	operating	system	UI,	then	use	VS	Code's	File	>
Open	Folder	to	open	the	project	folder.Create	a	virtual	environmentA	best	practice	among	Python	developers	is	to	use	a	project-specific	virtual	environment.	Once	you	activate	that	environment,	any	packages	you	then	install	are	isolated	from	other	environments,	including	the	global	interpreter	environment,	reducing	many	complications	that	can
arise	from	conflicting	package	versions.	You	can	create	non-global	environments	in	VS	Code	using	Venv	or	Anaconda	with	Python:	Create	Environment.Open	the	Command	Palette	(P	(Windows,	Linux	Ctrl+Shift+P)),	start	typing	the	Python:	Create	Environment	command	to	search,	and	then	select	the	command.The	command	presents	a	list	of
environment	types,	Venv	or	Conda.	For	this	example,	select	Venv.The	command	then	presents	a	list	of	interpreters	that	can	be	used	for	your	project.	Select	the	interpreter	you	installed	at	the	beginning	of	the	tutorial.After	selecting	the	interpreter,	a	notification	will	show	the	progress	of	the	environment	creation	and	the	environment	folder	(/.venv)
will	appear	in	your	workspace.Ensure	your	new	environment	is	selected	by	using	the	Python:	Select	Interpreter	command	from	the	Command	Palette.Note:	For	additional	information	about	virtual	environments,	or	if	you	run	into	an	error	in	the	environment	creation	process,	see	Environments.Create	a	Python	source	code	fileFrom	the	File	Explorer
toolbar,	select	the	New	File	button	on	the	hello	folder:Name	the	file	hello.py,	and	VS	Code	will	automatically	open	it	in	the	editor:By	using	the	.py	file	extension,	you	tell	VS	Code	to	interpret	this	file	as	a	Python	program,	so	that	it	evaluates	the	contents	with	the	Python	extension	and	the	selected	interpreter.Note:	The	File	Explorer	toolbar	also	allows
you	to	create	folders	within	your	workspace	to	better	organize	your	code.	You	can	use	the	New	folder	button	to	quickly	create	a	folder.Now	that	you	have	a	code	file	in	your	Workspace,	enter	the	following	source	code	in	hello.py:msg	=	"Roll	a	dice!"print(msg)When	you	start	typing	print,	notice	how	IntelliSense	presents	auto-completion
options.IntelliSense	and	auto-completions	work	for	standard	Python	modules	as	well	as	other	packages	you've	installed	into	the	environment	of	the	selected	Python	interpreter.	It	also	provides	completions	for	methods	available	on	object	types.	For	example,	because	the	msg	variable	contains	a	string,	IntelliSense	provides	string	methods	when	you
type	msg.:Finally,	save	the	file	(S	(Windows,	Linux	Ctrl+S)).	At	this	point,	you're	ready	to	run	your	first	Python	file	in	VS	Code.For	full	details	on	editing,	formatting,	and	refactoring,	see	Editing	code.	The	Python	extension	also	has	full	support	for	Linting.Run	Python	codeClick	the	Run	Python	File	play	button	in	the	top-right	side	of	the	editor.The
button	opens	a	terminal	panel	in	which	your	Python	interpreter	is	automatically	activated,	then	runs	python3	hello.py	(macOS/Linux)	or	python	hello.py	(Windows):There	are	three	other	ways	you	can	run	Python	code	within	VS	Code:Right-click	anywhere	in	the	editor	window	and	select	Run	Python	>	Run	Python	File	in	Terminal	(which	saves	the	file
automatically):Select	one	or	more	lines,	then	press	Shift+Enter	or	right-click	and	select	Run	Python	>	Run	Selection/Line	in	Python	Terminal.	Alternatively,	you	can	activate	Smart	Send	using	Shift+Enter	without	a	selection	and	the	Python	extension	will	send	the	smallest	runnable	block	of	code	near	where	your	cursor	is	placed	to	the	terminal.	This
command	is	convenient	for	testing	just	a	part	of	a	file.Note:	If	you	prefer	to	send	code	at	the	particular	line	your	cursor	is	placed,	you	can	turn	off	Smart	Send	by	setting	python.REPL.enableREPLSmartSend	:	"false"	in	your	User	settings.From	the	Command	Palette	(P	(Windows,	Linux	Ctrl+Shift+P)),	select	the	Python:	Start	Terminal	REPL	command
to	open	a	REPL	terminal	(notated	by	>>>)	for	the	currently	selected	Python	interpreter.	In	the	REPL,	you	can	then	enter	and	run	lines	of	code	one	at	a	time.Congrats,	you	just	ran	your	first	Python	code	in	Visual	Studio	Code!Configure	and	run	the	debuggerLet's	now	try	debugging	our	Python	program.	Debugging	support	is	provided	by	the	Python
Debugger	extension,	which	is	automatically	installed	with	the	Python	extension.	To	ensure	it	has	been	installed	correctly,	open	the	Extensions	view	(X	(Windows,	Linux	Ctrl+Shift+X))	and	search	for	@installed	python	debugger.	You	should	see	the	Python	Debugger	extension	listed	in	the	results.Next,	set	a	breakpoint	on	line	2	of	hello.py	by	placing
the	cursor	on	the	print	call	and	pressing	F9.	Alternately,	click	in	the	editor's	left	gutter,	next	to	the	line	numbers.	When	you	set	a	breakpoint,	a	red	circle	appears	in	the	gutter.Next,	to	initialize	the	debugger,	press	F5.	Since	this	is	your	first	time	debugging	this	file,	a	configuration	menu	will	open	from	the	Command	Palette	allowing	you	to	select	the
type	of	debug	configuration	you	would	like	for	the	opened	file.Note:	VS	Code	uses	JSON	files	for	all	of	its	various	configurations;	launch.json	is	the	standard	name	for	a	file	containing	debugging	configurations.Select	Python	File,	which	is	the	configuration	that	runs	the	current	file	shown	in	the	editor	using	the	currently	selected	Python	interpreter.The
debugger	will	start,	and	then	stop	at	the	first	line	of	the	file	breakpoint.	The	current	line	is	indicated	with	a	yellow	arrow	in	the	left	margin.	If	you	examine	the	Local	variables	window	at	this	point,	you	can	see	that	the	msg	variable	appears	in	the	Local	pane.A	debug	toolbar	appears	along	the	top	with	the	following	commands	from	left	to	right:
continue	(F5),	step	over	(F10),	step	into	(F11),	step	out	(F11	(Windows,	Linux	Shift+F11)),	restart	(F5	(Windows,	Linux	Ctrl+Shift+F5)),	and	stop	(F5	(Windows,	Linux	Shift+F5)).The	Status	Bar	also	changes	color	(orange	in	many	themes)	to	indicate	that	you're	in	debug	mode.	The	Python	Debug	Console	also	appears	automatically	in	the	lower	right
panel	to	show	the	commands	being	run,	along	with	the	program	output.To	continue	running	the	program,	select	the	continue	command	on	the	debug	toolbar	(F5).	The	debugger	runs	the	program	to	the	end.Tip	Debugging	information	can	also	be	seen	by	hovering	over	code,	such	as	variables.	In	the	case	of	msg,	hovering	over	the	variable	will	display
the	string	Roll	a	dice!	in	a	box	above	the	variable.You	can	also	work	with	variables	in	the	Debug	Console	(If	you	don't	see	it,	select	Debug	Console	in	the	lower	right	area	of	VS	Code,	or	select	it	from	the	...	menu.)	Then	try	entering	the	following	lines,	one	by	one,	at	the	>	prompt	at	the	bottom	of	the	console:msgmsg.capitalize()msg.split()Select	the
blue	Continue	button	on	the	toolbar	again	(or	press	F5)	to	run	the	program	to	completion.	"Roll	a	dice!"	appears	in	the	Python	Debug	Console	if	you	switch	back	to	it,	and	VS	Code	exits	debugging	mode	once	the	program	is	complete.If	you	restart	the	debugger,	the	debugger	again	stops	on	the	first	breakpoint.To	stop	running	a	program	before	it's
complete,	use	the	red	square	stop	button	on	the	debug	toolbar	(F5	(Windows,	Linux	Shift+F5)),	or	use	the	Run	>	Stop	debugging	menu	command.For	full	details,	see	Debugging	configurations,	which	includes	notes	on	how	to	use	a	specific	Python	interpreter	for	debugging.Tip:	Use	Logpoints	instead	of	print	statements:	Developers	often	litter	source
code	with	print	statements	to	quickly	inspect	variables	without	necessarily	stepping	through	each	line	of	code	in	a	debugger.	In	VS	Code,	you	can	instead	use	Logpoints.	A	Logpoint	is	like	a	breakpoint	except	that	it	logs	a	message	to	the	console	and	doesn't	stop	the	program.	For	more	information,	see	Logpoints	in	the	main	VS	Code	debugging
article.Install	and	use	packagesLet's	build	upon	the	previous	example	by	using	packages.In	Python,	packages	are	how	you	obtain	any	number	of	useful	code	libraries,	typically	from	PyPI,	that	provide	additional	functionality	to	your	program.	For	this	example,	you	use	the	numpy	package	to	generate	a	random	number.Return	to	the	Explorer	view	(the
top-most	icon	on	the	left	side,	which	shows	files),	open	hello.py,	and	paste	in	the	following	source	code:import	numpy	as	npmsg	=	"Roll	a	dice!"print(msg)print(np.random.randint(1,9))Tip:	If	you	enter	the	above	code	by	hand,	you	may	find	that	auto-completions	change	the	names	after	the	as	keywords	when	you	press	Enter	at	the	end	of	a	line.	To
avoid	this,	type	a	space,	then	Enter.Next,	run	the	file	in	the	debugger	using	the	"Python:	Current	file"	configuration	as	described	in	the	last	section.You	should	see	the	message,	"ModuleNotFoundError:	No	module	named	'numpy'".	This	message	indicates	that	the	required	package	isn't	available	in	your	interpreter.	If	you're	using	an	Anaconda
distribution	or	have	previously	installed	the	numpy	package	you	may	not	see	this	message.To	install	the	numpy	package,	stop	the	debugger	and	use	the	Command	Palette	to	run	Terminal:	Create	New	Terminal	(`	(Windows,	Linux	Ctrl+Shift+`)).	This	command	opens	a	command	prompt	for	your	selected	interpreter.To	install	the	required	packages	in
your	virtual	environment,	enter	the	following	commands	as	appropriate	for	your	operating	system:Install	the	packages#	Don't	use	with	Anaconda	distributions	because	they	include	matplotlib	already.#	macOSpython3	-m	pip	install	numpy#	Windows	(may	require	elevation)py	-m	pip	install	numpy#	Linux	(Debian)apt-get	install	python3-tkpython3	-m
pip	install	numpyNow,	rerun	the	program,	with	or	without	the	debugger,	to	view	the	output!Managing	dependencies	across	environmentsWhen	working	on	Python	projects,	its	essential	to	manage	your	dependencies	effectively.	One	useful	tip	is	to	use	the	pip	freeze	>	requirements.txt	command.	This	command	helps	you	create	a	requirements.txt	file



that	lists	all	the	packages	installed	in	your	virtual	environment.	This	file	can	then	be	used	to	recreate	the	same	environment	elsewhere.Follow	these	steps	to	create	a	requirements.txt	file:Activate	your	virtual	environment,	if	you	havent	already.source	venv/bin/activate	#	On	macOS/Linux.\venv\Scripts\activate	#	On	WindowsGenerate	the
requirements.txt	file.pip	freeze	>	requirements.txtYou	can	now	use	the	newly	generated	requirements.txt	file	to	install	dependencies	in	another	environment.	Furthermore,	you	can	continue	to	add	dependencies	to	it	as	your	project	may	grow	in	complexity.pip	install	-r	requirements.txtBy	following	these	steps,	you	ensure	that	your	project
dependencies	are	consistent	across	different	environments,	making	it	easier	to	collaborate	with	others	and	deploy	your	project.Congrats	on	completing	the	Python	tutorial!	During	the	course	of	this	tutorial,	you	learned	how	to	create	a	Python	project,	create	a	virtual	environment,	run	and	debug	your	Python	code,	and	install	Python	packages.	Explore
additional	resources	to	learn	how	to	get	the	most	out	of	Python	in	Visual	Studio	Code!Next	stepsTo	learn	how	to	build	web	apps	with	popular	Python	web	frameworks,	see	the	following	tutorials:	There	is	then	much	more	to	explore	with	Python	in	Visual	Studio	Code:	07/09/2025	Creating	a	Python	project	in	Visual	Studio	Code	(VS	Code)	is	a
straightforward	process.	Heres	a	step-by-step	guide	to	help	you	get	started:	Install	VS	Code:If	you	havent	already,	download	and	install	Visual	Studio	Code	from	the	official	website	(Download	Visual	Studio	Code	Mac,	Linux,	Windows).	Install	Python:Ensure	you	have	Python	installed	on	your	system.	You	can	download	it	from	the	official	Python
website.	Make	sure	to	add	Python	to	your	PATH	during	installation	(Download	Python	|	Python.org).	Install	Python	Extension	for	VS	Code:Open	VS	Code	and	go	to	the	Extensions	view	by	clicking	on	the	Extensions	icon	in	the	Activity	Bar	on	the	side	of	the	window	or	by	pressing	Ctrl+Shift+X.	Search	for	Python	and	install	the	extension	provided	by
Microsoft.	Create	a	New	Project	Folder:Create	a	new	folder	on	your	computer	where	you	want	to	store	your	Python	project.	You	can	name	it	something	relevant	to	your	project.	Open	the	Project	Folder	in	VS	Code:Open	VS	Code,	then	go	to	File	>	Open	Folder	and	select	the	folder	you	just	created.	Create	a	Virtual	Environment:It	is	recommended	to
create	virtual	environment	to	isolate	project	dependencies.	Open	the	terminal	in	VS	Code	by	going	to	View	>	Terminal	or	pressing	Ctrl+`	.	In	the	terminal,	navigate	to	your	project	folder	and	create	a	virtual	environment	by	running:	python	-m	venv	venv	Activate	the	virtual	environment:	On	Windows:.\venv\Scripts\activate	On	macOS/Linux:source
venv/bin/activate	Install	dependencies:If	you	need	any	Python	packages	for	your	project,	you	can	install	them	using	pippip	install	package-name	Create	Requirement	file:Pip	freeze	is	a	command	used	in	Python	tofreeze	the	current	state	of	a	virtual	environment.	This	command	creates	a	list	of	all	the	installed	packages	in	the	virtual	environment,	along
with	their	versions.	This	list	can	be	used	later	to	recreate	the	same	virtual	environment	on	another	machine.	Always	activate	your	virtual	environment	before	using	pip	freeze.	Remember	to	update	therequirements.txtfile	when	new	packages	are	installedpip	freeze	>	requirements.txt	To	install	requirements	in	new	virtual	environment,	use	command
pip	install	-r	requirements.txt	Create	a	Python	File:In	your	project	folder,	create	a	new	Python	file	by	going	to	File	>	New	File	or	pressing	Ctrl+N.	Save	the	file	with	a	.py	extension,	for	example,	main.py.	Select	the	Python	Interpreter:Click	on	the	Python	version	displayed	in	the	bottom-left	corner	of	VS	Code.	Select	the	interpreter	from	the	list	that
corresponds	to	your	virtual	environment	(if	you	created	one)	or	your	system	Python	installation.	Write	Your	Python	Code:Open	your	main.py	file	and	start	writing	your	Python	code.	For	example:print(Hello,	VS	Code!)	Run	Your	Python	Code:You	can	run	your	Python	code	by	opening	the	terminal	and	typing:python	main.pyAlternatively,	you	can	run	the
code	directly	in	VS	Code	by	right-clicking	inside	the	editor	and	selecting	Run	Python	File	in	Terminal.	Conclusion:You	now	have	a	basic	Python	project	set	up	in	VS	Code.	As	you	continue	to	develop	your	project,	you	can	take	advantage	of	VS	Codes	features	like	IntelliSense,	linting,	and	version	control	integration	to	enhance	your	development
experience.	Setting	up	Python	and	its	environment	can	be	confusing	for	beginners,	but	its	simpler	than	it	looks!	This	guide	will	walk	you	through	the	steps	needed	to	install	Python,	set	up	a	virtual	environment,	and	install	the	necessary	libraries.	By	the	end,	youll	be	ready	to	run	any	Python	script	easily.	First,	go	to	the	official	Python	website	and
download	the	latest	Python	version	(3.x)	for	your	operating	system.	Then,	run	the	installer	and	follow	the	instructions.	Make	sure	to	check	the	box	that	says	Add	Python	to	PATH	during	the	installation	process.	This	will	allow	you	to	run	Python	from	the	command	line	and	make	it	much	easier	to	manage	later.	Open	a	terminal	on	your	PC	(Command
Prompt,	PowerShell,	or	VS	Code	terminal).	Type	python	--version	and	press	Enter.	If	Python	is	installed,	the	version	number	will	be	displayed	like	this:	You	may	have	a	newer	version,	so	it	will	display	your	version.	However,	if	it	doesnt	display	the	version,	it	means	you	did	something	wrong,	so	go	over	the	steps	again.	Why	VS	Code?	VS	Code	is	a
popular	and	lightweight	code	editor	that	is	perfect	for	writing	and	running	Python	scripts.	To	install	VS	code,	go	to	the	VS	Code	website,	and	download	the	installer	for	your	operating	system	(Windows,	macOS,	or	Linux).	Then,	run	the	installer	and	follow	the	instructions.	Make	sure	the	Add	to	PATH	option	is	selected	during	installation,	as	we	did
when	installing	Python.	Finally,	open	VS	Code,	go	to	Extensions	on	the	left	sidebar	and	install	Microsofts	Python	Extension.	This	one:	A	virtual	environment	helps	you	manage	dependencies	for	Python	projects	without	impacting	your	systems	setup	or	causing	conflicts	between	installed	libraries.	In	VS	Code,	open	the	folder	where	your	Python	script
will	be	saved	and	open	a	new	terminal	by	clicking	ctrl	+	shift	+	`	Then,	run	the	command:	python	-m	venv	venv	This	creates	a	folder	named	venv	in	your	project	directory.	Now,	youll	have	to	activate	it	to	use	it	by	running	this	command:	Windows:	venv\Scripts\activate	macOS/Linux:	source	venv/bin/activate	Once	activated,	the	terminal	will	show
(venv)	before	the	command	prompt.	If	you	want	to	deactivate	the	virtual	environment	just	type	deactivate	and	press	Enter.	Libraries	are	collections	of	pre-written	code	that	provide	additional	functionality,	allowing	you	to	perform	specific	tasks	or	solve	problems	without	writing	the	code	from	scratch.	For	example,	you	can	use	the	requests	library	for
web	requests	or	pandas	for	data	analysis.	Installing	any	libraries	is	very	simple;	all	you	have	to	do	is	use	the	pip	command	in	this	way:	pip	install	requests	Here	are	some	other	functionalities	you	can	do	with	libraries:	See	all	installed	libraries:	pip	list	Save	the	list	of	installed	libraries	to	a	file:	pip	freeze	>	requirements.txt	Install	a	list	of	libraries	from
a	text	file:	pip	install	-r	requirements.txtOpen	VS	Code	and	create	a	new	file	(e.g.,	script.py).	Write	or	paste	your	Python	code	into	the	file	and	save	it.	Open	the	terminal	ctrl	+	shift	+	`	Ensure	the	virtual	environment	is	activated.	Run	the	script:	python	script.py	By	following	these	steps,	youll	be	ready	to	set	up	Python,	manage	dependencies,	and
execute	Python	scripts.	Create	Python	Project	in	VS	Code:	Step-by-Step	Guide	for	Beginners	ProjectHey	there,	aspiring	tech	wizards	and	Python	enthusiasts!	Today,	we	are	diving	into	the	exciting	world	of	creating	a	Python	project	in	the	ever-popular	Visual	Studio	Code	(VS	Code)	environment.	Buckle	up,	grab	your	coding	hats,	and	lets	embark	on	this
adventure	together!	So,	first	things	first!	You	gotta	have	VS	Code	on	your	system	to	rock	this	Python	party.	If	you	havent	downloaded	this	gem	yet,	what	on	earth	are	you	waiting	for?	Go	ahead,	hit	that	download	button,	and	lets	get	this	show	on	the	road!	Next	up,	its	time	to	make	VS	Code	Python-friendly.	Install	the	Python	extension	in	VS	Code	so	it
can	understand	all	your	Pythonic	dreams	and	turn	them	into	reality.	A	few	clicks	here	and	there,	and	voil,	youre	all	set	to	conquer	the	Python	universe!	Ah,	the	wonderful	world	of	virtual	environments!	Trust	me,	these	are	your	best	buddies	when	it	comes	to	keeping	your	Python	projects	neat	and	tidy.	Set	up	a	virtual	environment	like	a	pro	and	watch
how	it	works	its	magic	to	keep	things	organized.	Say	goodbye	to	dependency	chaos!	Now,	lets	work	our	magic	in	VS	Code	by	creating	some	Python	files	and	folders	to	house	our	brilliant	code	creations.	Organize	your	project	structure	in	a	way	that	even	Marie	Kondo	would	approve	of!	Clean	code	sparks	joy,	after	all!	Here	comes	the	thrilling	part
writing	your	very	first	Python	program!	The	excitement,	the	nerves,	the	endless	possibilities	its	all	part	of	the	coding	journey.	Let	your	creativity	flow	as	you	craft	lines	of	code	that	will	soon	come	to	life.	Embrace	the	Pythonic	vibes,	my	friend!	Once	your	masterpiece	is	ready,	its	showtime!	Hit	that	run	button	in	VS	Code	and	watch	your	Python	code
come	alive.	Whether	its	a	simple	Hello,	World!	or	a	complex	algorithm,	seeing	your	code	run	successfully	is	always	a	satisfying	moment.	Enjoy	the	magic	of	coding	in	action!	Ah,	dependencies	the	silent	heroes	of	every	Python	project.	Learn	the	art	of	using	pip	to	install	essential	packages	and	libraries	to	supercharge	your	Python	projects.	Need	a
package?	Say	no	more	pip	has	your	back!	To	keep	your	project	consistent	and	hassle-free,	dive	into	the	world	of	requirements.txt	files.	Listing	down	all	your	project	dependencies	here	will	ensure	smooth	sailing	when	sharing	your	project	with	others	or	deploying	it.	Think	of	it	as	your	projects	recipe	book!	Bugs	beware!	Its	time	to	unleash	the	power	of
the	debugger	in	VS	Code.	Track	down	those	pesky	bugs,	set	breakpoints,	and	step	through	your	code	like	a	detective	solving	a	mystery.	Debugging	might	just	become	your	new	favorite	pastime!	Last	but	not	least,	testing	the	unsung	hero	of	reliable	code.	Dive	into	the	world	of	writing	tests	in	Python	to	ensure	your	code	behaves	as	expected.	From	unit
tests	to	integration	tests,	testing	is	your	safety	net	in	the	wild	world	of	coding.	Embrace	the	process	and	code	fearlessly!	In	closing,	creating	a	Python	project	in	VS	Code	is	not	just	about	writing	code;	its	about	embracing	the	journey	of	learning,	exploring,	and	pushing	your	boundaries.	So,	grab	that	cup	of	coffee,	don	your	coding	cape,	and	embark	on
this	Python	adventure	with	zest	and	zeal!	Thank	you	for	joining	me	on	this	coding	escapade!	Until	next	time,	happy	coding	and	may	your	Python	projects	shine	brighter	than	a	supernova	in	the	coding	galaxy!	#HappyCoding	Overall,	creating	a	Python	project	in	VS	Code	is	an	exhilarating	journey	filled	with	coding	triumphs,	debugging	dramas,	and
testing	adventures.	Dive	in,	explore,	and	let	your	Pythonic	creativity	soar	to	new	heights!	Copy	Code	Copied	Use	a	different	Browser	import	os#	Step	1:	Create	a	folder	where	your	project	will	resideproject_folder	=	'MyPythonProject'if	not	os.path.exists(project_folder):	os.makedirs(project_folder)#	Step	2:	Create	a	Python	file	in	that
folderpython_filename	=	'main.py'with	open(os.path.join(project_folder,	python_filename),	'w')	as	file:	file.write('print('Hello,	VS	Code!')')#	Step	3:	Create	a	virtual	environmentos.system(f'python	-m	venv	{os.path.join(project_folder,	'venv')}')#	Step	4:	Write	a	requirements.txt	(though	empty	here,	typically	would	include	needed
packages)requirements_file	=	'requirements.txt'with	open(os.path.join(project_folder,	requirements_file),	'w')	as	file:	file.write('#	Add	your	dependencies	here,	e.g.,#	numpy==1.18.5')#	Step	5:	Add	a	.gitignore	filegitignore_content	=	'''#	Byte-compiled	/	optimized	/	DLL	files__pycache__/*.py[cod]*$py.class'''with	open(os.path.join(project_folder,
'.gitignore'),	'w')	as	file:	file.write(gitignore_content)	No	standard	output	is	expected	as	this	script	sets	up	a	project	structure	without	producing	console	output	unless	an	error	occurs.	The	provided	Python	script	automates	the	setup	of	a	new	Python	project	in	Visual	Studio	Code	for	beginners.	Heres	a	breakdown	of	its	operations:Create	Project
Directory:	The	script	starts	by	defining	a	project	folder	(MyPythonProject).	It	checks	whether	this	folder	exists,	and	if	not,	it	creates	it	using	os.makedirs.Add	Main	Python	file:	Within	the	newly	created	project	folder,	the	script	generates	a	main	Python	file	(main.py).	It	opens	this	file	in	write	mode	and	inserts	a	simple	print	statement	to	exemplify	a
basic	operation.Setup	Virtual	Environment:	To	encapsulate	project	dependencies,	a	virtual	environment	named	venv	is	created	inside	the	project	folder	using	the	Python	venv	module.Create	requirements.txt:	Its	common	practice	to	list	project	dependencies	in	a	requirements.txt	file.	The	script	adds	this	file	with	a	placeholder	for	dependencies,	ready
to	be	filled	as	needed.Add	.gitignore	File:	Finally,	the	script	creates	a	.gitignore	file	tailored	for	Python	projects	(ignoring	bytecode	and	similar	files).	This	file	is	crucial	for	version	control,	where	it	ensures	that	unnecessary	files	are	not	tracked	by	Git.Overall,	this	script	forms	a	foundational	template	that	can	be	expanded	based	on	the	specific	needs	of
any	Python	project.	Creating	Python	projects	in	VS	Code	is	essential	for	beginners	as	it	provides	a	user-friendly	interface,	powerful	tools,	and	seamless	integration	with	the	Python	programming	language.	It	helps	in	organizing	code,	debugging,	and	collaborating	effectively	on	projects.	To	start	a	new	Python	project	in	VS	Code,	you	can	open	the	editor,
create	a	new	folder	for	your	project,	set	up	a	virtual	environment,	install	the	necessary	Python	extensions,	and	begin	writing	your	Python	code.	VS	Code	offers	a	wide	range	of	features	for	Python	development,	including	IntelliSense	for	code	completion,	debugging	capabilities,	version	control	integration,	built-in	terminal,	and	an	extensive	marketplace
for	extensions	to	enhance	your	workflow.	You	can	debug	your	Python	code	in	VS	Code	by	setting	breakpoints	in	your	code,	running	the	debugger,	stepping	through	code,	inspecting	variables,	and	monitoring	the	execution	flow	to	identify	and	fix	issues	effectively.	Yes,	VS	Code	allows	for	seamless	collaboration	on	Python	projects	through	features	like
Live	Share,	which	enables	real-time	collaboration,	sharing	of	code	snippets,	and	joint	debugging	sessions	with	team	members,	regardless	of	their	physical	location.	Several	popular	extensions	are	recommended	for	Python	projects	in	VS	Code,	such	as	Python,	Pylance,	Python	Docstring	Generator,	GitLens,	and	Python	Test	Explorer,	to	boost
productivity,	streamline	workflows,	and	enhance	the	development	experience.	You	can	manage	dependencies	in	your	Python	project	within	VS	Code	by	utilizing	tools	like	pip,	virtual	environments,	requirements.txt	files,	and	the	Python	extensions	package	management	capabilities	to	install,	update,	and	organize	project	dependencies	efficiently.	Yes,
you	can	deploy	Python	projects	from	VS	Code	to	production	environments	by	configuring	deployment	pipelines,	integrating	with	cloud	services,	containerizing	applications,	and	leveraging	extensions	like	Azure	App	Service,	Docker,	or	Heroku	for	seamless	deployment	and	scaling.	There	are	numerous	online	resources,	tutorials,	documentation,	and
community	forums	available	to	help	you	enhance	your	skills	in	creating	Python	projects	in	VS	Code.	Websites	like	Real	Python,	Stack	Overflow,	VS	Code	documentation,	and	YouTube	tutorials	offer	valuable	insights,	tips,	and	guidance	for	improving	your	Python	development	proficiency.	Ensuring	the	security	of	your	Python	projects	in	VS	Code
involves	practices	like	using	secure	coding	principles,	keeping	dependencies	up	to	date,	implementing	authentication	mechanisms,	encrypting	sensitive	data,	performing	regular	security	audits,	and	following	best	practices	for	secure	development	and	deployment	of	applications.

Exercícios	sobre	as	cruzadas	7o	ano.	Exercícios	sobre	as	cruzadas	7o	ano	com	gabarito.	As	cruzadas	historia	7	ano.	Cruzadas	7	ano.

mazoxuhota
http://cursushuis.nl/userfiles/file/repaxiv_kedigaveranori_xutovaber_lemekodazudi.pdf
what	is	church	polity
ich	analysis	guidelines
https://ccsctda.com/ckfinder/userfiles/files/20250721_172040.pdf
2016	freightliner	cascadia	dash	light	meanings
surah	rahman	in	english	words
http://progetec.org/userfiles/files/rosujujanepusem_pozozaxorotozub_manimerigafeli.pdf
ceme
http://scuderieverdina.it/scuderia/userfiles/file/taliwemakodule-nadetumuseno.pdf
pumuje
http://xinjihai.com/fckimage/image/file/7481306461.pdf
https://miraclechuppahs.com/userfiles/file/54678512736.pdf
tuha
yazu
xoyazaha
http://gymostrov.org/gymostrov/userfiles/file/ac09fe3c-bfe6-4309-a6a8-0cd15781ef37.pdf
apple	carplay	won't	connect	wirelessly
http://diamant-x.sk/UserFiles/file/98518869967.pdf

https://hkdesignincubation.org/Product%20Photo/files/joditi.pdf
http://cursushuis.nl/userfiles/file/repaxiv_kedigaveranori_xutovaber_lemekodazudi.pdf
https://bluetact.com/locktactyuma/userfiles/file/loreribosifi-notav.pdf
https://yuha.be/_files/file/439126623.pdf
https://ccsctda.com/ckfinder/userfiles/files/20250721_172040.pdf
http://patp1ryb.ru/media/file/214426d5-f567-40af-80c6-bdadac1ce48d.pdf
https://artisanat-hausser.com/fckeditor/editor/filemanager/connectors/userfiles/file/79226652791.pdf
http://progetec.org/userfiles/files/rosujujanepusem_pozozaxorotozub_manimerigafeli.pdf
http://jtylek.pl/Upload/file/16942385250.pdf
http://scuderieverdina.it/scuderia/userfiles/file/taliwemakodule-nadetumuseno.pdf
http://catwalkexotique.com/userfiles/25377808410.pdf
http://xinjihai.com/fckimage/image/file/7481306461.pdf
https://miraclechuppahs.com/userfiles/file/54678512736.pdf
https://pravegresorts.com/scgtest/team-explore/uploads/files/banepapukob.pdf
http://samwha.com/upload/userfiles/file/27000248729.pdf
http://samoinstitute.mn/uploads/assets/file/ce10e343-44af-4518-8cad-396bd6c3e0fa.pdf
http://gymostrov.org/gymostrov/userfiles/file/ac09fe3c-bfe6-4309-a6a8-0cd15781ef37.pdf
http://foreverymuslim.net/home1/forevev3/public_html/foreverymuslim/upload/file/zexexukisano.pdf
http://diamant-x.sk/UserFiles/file/98518869967.pdf

