
	

https://bunobor.dutabuz.com/299461287510869934020797692763733768946086?sinadanedezefilodowasozawideb=depisufelabikitosexiwadolefoxiruveposuzuluremixekulufusegodixufovuwolafidakinazopokuwusuwanilokidesimorujoxowodamijubojuzuluxumokujoketanegenuxifurixavikivebazarirexejemonilumefawitorarisagolifebetisaboxiguzu&utm_term=generative+adversarial+network+tutorial&fovilugukipodowiwabegigerowedaruduloruzepamixaxofafulifakodupoxapalovozipefuzenixubenuweja=tokavabajodidotomusemuzupalosexutorakobizugerikubikifolekimuvunijeketapegebibaxineniwuwujamafasunogilisanosegesadolikuxavonozix

Generative	Adversarial	Networks	(GANs)	-	an	innovative	deep	learning	approach	for	producing	highly	realistic	and	diverse	synthetic	data.	This	comprehensive	tutorial	provides	an	introduction	to	GANs	in	Python,	covering	technical	background,	implementation	guide,	code	examples,	best	practices,	testing	and	debugging,	and	conclusion.	Importance	of
GANs	GANs	have	numerous	applications	across	various	fields,	including	Computer	Vision,	Natural	Language	Processing,	and	Audio	Processing.	They	can	be	used	to	generate	synthetic	images,	videos,	text,	or	audio,	enhancing	training	datasets,	increasing	data	diversity,	and	improving	model	robustness.	What	Readers	Will	Learn	By	the	end	of	this
tutorial,	readers	will	gain	expertise	in:	*	Core	concepts	and	terminology	of	GANs	*	Implementing	GANs	using	Python	*	Applying	GANs	for	image	and	video	generation	*	Best	practices	and	common	pitfalls	when	working	with	GANs	*	Testing	and	debugging	GANs	Prerequisites	Before	starting	this	tutorial,	readers	should	have:	*	Basic	knowledge	of
Python	programming	*	Familiarity	with	deep	learning	concepts,	including	neural	networks	and	optimization	algorithms	*	Knowledge	of	popular	deep	learning	frameworks,	such	as	TensorFlow	and	PyTorch	This	tutorial	will	utilize	the	following	technologies	and	tools:	*	Python	3.x:	The	programming	language	used	for	implementation	guide	*	TensorFlow
2.x:	The	deep	learning	framework	used	for	implementation	guide	*	PyTorch	1.x:	The	deep	learning	framework	used	for	implementation	guide	*	Keras	2.x:	The	high-level	deep	learning	API	used	for	implementation	guide	*	NumPy	1.x:	The	library	used	for	numerical	computations	*	Matplotlib	3.x:	The	library	used	for	data	visualization	Technical
Background	GANs	consist	of	two	neural	networks:	a	generator	network	and	a	discriminator	network.	The	generator	network	takes	a	random	noise	vector	as	input	and	produces	a	synthetic	data	sample,	while	the	discriminator	network	takes	a	data	sample	(either	real	or	synthetic)	as	input	and	outputs	a	probability	that	the	sample	is	real.	Core	Concepts
and	Terminology	*	Generator	Network:	A	neural	network	that	takes	a	random	noise	vector	as	input	and	produces	a	synthetic	data	sample.	*	Discriminator	Network:	A	neural	network	that	takes	a	data	sample	(either	real	or	synthetic)	as	input	and	outputs	a	probability	that	the	sample	is	real.	*	Adversarial	Training:	The	process	of	training	the	generator
and	discriminator	networks	simultaneously,	where	the	generator	tries	to	produce	synthetic	samples	that	fool	the	discriminator,	and	the	discriminator	tries	to	correctly	classify	real	and	synthetic	samples.	*	Loss	Functions:	The	functions	used	to	measure	the	performance	of	the	generator	and	discriminator	networks.	Common	loss	functions	include
binary	cross-entropy	and	mean	squared	error.	How	it	Works	Under	the	Hood	The	GAN	training	process	can	be	broken	down	into	the	following	steps:	*	Generator	Network:	The	generator	network	takes	a	random	noise	vector	as	input	and	produces	a	synthetic	data	sample.	*	Discriminator	Network:	The	discriminator	network	takes	a	data	sample	(either
real	or	synthetic)	as	input	and	outputs	a	probability	that	the	sample	is	real.	...	The	generator	network	is	responsible	for	producing	synthetic	data	samples	by	taking	input	and	generating	a	sample.	The	discriminator	network,	on	the	other	hand,	assesses	whether	the	provided	data	sample	is	genuine	or	synthetic,	assigning	a	probability	value	based	on	its
evaluation.	A	key	aspect	of	GANs	is	adversarial	training,	where	both	networks	are	simultaneously	trained,	with	the	generator	attempting	to	produce	realistic	samples	that	deceive	the	discriminator	and	vice	versa.	It's	crucial	to	design	the	generator	network	to	produce	a	diverse	range	of	synthetic	data,	while	the	discriminator	should	be	capable	of
accurately	distinguishing	between	real	and	synthetic	samples.	The	loss	functions	used	to	evaluate	the	performance	of	these	networks	must	also	be	carefully	chosen	to	effectively	measure	their	capabilities.	To	implement	GANs	using	Python	and	TensorFlow,	several	steps	are	required:	1.	**Install	Required	Packages**:	First,	install	necessary	packages
such	as	TensorFlow,	NumPy,	and	Matplotlib.	2.	**Import	Required	Packages**:	Next,	import	these	packages	into	your	Python	script.	3.	**Define	Generator	Network**:	The	generator	network	should	be	defined	using	a	`tf.variable_scope`	to	encapsulate	its	operations,	including	dense	layers,	reshaping,	batch	normalization,	transposed	convolutional
layers,	and	sigmoid	activation.	4.	**Define	Discriminator	Network**:	Similarly,	the	discriminator	network	is	defined	with	convolutional	layers,	batch	normalization,	leaky	ReLU	activation,	and	a	dense	layer	for	outputting	probabilities.	5.	**Define	Loss	Functions**:	Two	loss	functions	are	required:	one	to	measure	the	generator's	performance	by
comparing	its	outputs	with	a	target	value	(1),	and	another	for	the	discriminator	to	compare	its	outputs	against	both	real	and	synthetic	samples.	6.	**Adversarial	Training**:	To	perform	adversarial	training,	placeholders	must	be	defined	for	inputs	and	generated	samples,	then	the	loss	functions	are	applied	to	these	inputs.	Optimizers	are	used	to
minimize	these	losses	during	training.	7.	**Train	GAN**:	Finally,	a	TensorFlow	session	is	initiated	to	train	the	model.	By	following	these	steps	and	adhering	to	best	practices	for	designing	and	implementing	GANs,	it's	possible	to	successfully	implement	a	Generative	Adversarial	Network	(GAN)	using	Python	and	TensorFlow.	for	i	in	range(10000):	noise
=	np.random.normal(0,	1,	(1,	100))	fake_image	=	sess.run(G,	feed_dict={z:	noise})	sess.run(optimizer_g,	feed_dict={z:	noise})	real_image	=	np.random.normal(0,	1,	(1,	28,	28,	1))	sess.run(optimizer_d,	feed_dict={x:	real_image})	print(sess.run(loss_g_value))	Divergence	Issues:	Consider	increasing	the	learning	rate	or	switching	to	another
optimisation	algorithm	to	overcome	divergence	issues.	Mode	Collapse	Issues:	Try	using	a	different	generator	architecture	or	loss	function	to	tackle	mode	collapse	issues.	This	tutorial	provides	a	comprehensive	introduction	to	Generative	Adversarial	Networks	(GANs)	with	Python,	covering	technical	background,	implementation	guide,	code	examples,
best	practices,	testing	and	debugging,	and	conclusion.	We	hope	that	this	tutorial	has	provided	valuable	insights	and	practical	knowledge	for	readers	to	work	with	GANs.	Next	Steps	and	Further	Learning:	Read	the	original	paper	on	GANs	to	learn	more	about	the	theory	and	applications	of	GANs.	Experiment	with	different	architectures	for	the
generator	and	discriminator	networks	to	improve	the	performance	of	the	GAN.	Experiment	with	different	loss	functions	to	improve	the	performance	of	the	GAN.	GANs	are	a	class	of	deep	learning	models	introduced	by	Ian	Goodfellow	and	his	colleagues	in	2014.	The	core	idea	behind	GANs	is	to	train	a	generator	network	to	produce	data	that	is
indistinguishable	from	real	data,	while	simultaneously	training	a	discriminator	network	to	differentiate	between	real	and	generated	data.	Architecture	overview:	GANs	consist	of	two	main	components:	the	generator	and	the	discriminator.	The	generator	takes	random	noise	as	input	and	generates	synthetic	data	samples.	Its	goal	is	to	create	data	that	is
realistic	enough	to	deceive	the	discriminator.	The	discriminator	evaluates	whether	a	given	sample	is	real	or	fake,	with	its	objective	being	to	become	increasingly	accurate	in	distinguishing	between	real	and	generated	samples.	GANs	vs	VAEs:	GANs	and	VAEs	are	both	popular	generative	models	in	machine	learning,	but	they	have	different	strengths
and	weaknesses.	Whether	one	is	“better”	depends	on	the	specific	task	and	requirements.	The	primary	distinctions	between	Feature	GANs	(Generative	Adversarial	Networks)	and	VAEs	(Variational	Autoencoders)	lie	in	their	respective	strengths:	**Feature	GANs**	excel	at	producing	high-quality	images	but	come	with	a	higher	ease	of	training	difficulty
and	lower	stability,	whereas	**VAEs**	offer	easier	training	and	greater	stability.	However,	they	often	produce	lower	quality	images	compared	to	GANs.	The	choice	between	these	models	hinges	on	one's	specific	needs	and	priorities.	For	tasks	requiring	high-quality	images	such	as	generating	realistic	faces	or	landscapes,	GANs	might	be	the	preferred
choice.	Conversely,	for	applications	where	ease	of	training	and	model	stability	are	paramount,	VAEs	could	be	more	suitable.	The	concept	of	a	structure	generating	data	is	not	novel,	but	Generative	Adversarial	Networks	(GANs)	have	revolutionized	image	and	video	generation	by	providing	impressive	results.	Unlike	discriminative	models,	GANs	belong
to	the	generative	model	category.	To	understand	GANs	better,	let's	first	explore	the	differences	between	these	two	types	of	models.	Discriminative	models	are	commonly	used	for	supervised	classification	or	regression	problems,	whereas	generative	models	are	part	of	a	different	class.	For	instance,	when	training	a	model	to	classify	handwritten	digits
from	0	to	9,	discriminative	models	learn	boundaries	between	classes	using	labeled	datasets.	They	then	use	these	boundaries	to	predict	the	most	probable	digit	an	input	corresponds	to.	Generative	models,	like	GANs,	are	trained	to	describe	how	a	dataset	is	generated	in	terms	of	a	probabilistic	model.	By	sampling	from	a	generative	model,	you	can
generate	new	data.	This	type	of	learning	is	often	used	with	unlabeled	datasets	and	can	be	seen	as	a	form	of	unsupervised	learning.	Using	the	handwritten	digits	dataset,	a	generative	model	could	be	trained	to	generate	new	digits.	To	output	new	samples,	generative	models	incorporate	a	stochastic	element	that	influences	the	generated	samples.	Unlike
discriminative	models,	generative	models	learn	the	probability	distribution	of	the	input	data	and	use	this	information	to	generate	new	data	instances.	Note:	Generative	models	can	also	be	used	with	labeled	datasets	in	certain	cases.	Generative	models	can	learn	the	probability	P(x|y)	of	input	x	given	output	y	and	are	used	for	classification	tasks,	with
discriminative	models	performing	better	in	this	area.	Generative	models	like	GANs	use	two	neural	networks:	a	generator	that	estimates	real	samples'	distribution	to	generate	similar	data,	and	a	discriminator	trained	to	distinguish	between	real	and	generated	samples.	This	adversarial	process	allows	the	generator	to	improve	its	accuracy	while	the
discriminator	improves	its	ability	to	identify	generated	samples.	A	common	setup	is	shown	in	a	2D	example	where	the	generator	takes	random	data	from	a	latent	space	and	produces	data	resembling	real	samples,	with	the	discriminator	fed	either	real	or	generated	samples	to	estimate	their	probability	of	belonging	to	the	real	dataset.	The	GAN	training
process	involves	the	generator	trying	to	fool	the	discriminator	while	the	discriminator	improves	its	ability	to	identify	generated	samples.	Given	text:	consists	of	a	two-player	minimax	game	in	which	D	is	adapted	to	minimize	the	discrimination	error	between	real	and	generated	samples,	and	G	is	adapted	to	maximize	the	probability	of	D	making	a
mistake.	Although	the	dataset	containing	the	real	data	isn’t	labeled,	the	training	processes	for	D	and	G	are	performed	in	a	supervised	way.	At	each	step	in	the	training,	D	and	G	have	their	parameters	updated.	In	fact,	in	the	original	GAN	proposal,	the	parameters	of	D	are	updated	k	times,	while	the	parameters	of	G	are	updated	only	once	for	each
training	step.	However,	to	make	the	training	simpler,	you	can	consider	k	equal	to	1.	To	train	D,	at	each	iteration	you	label	some	real	samples	taken	from	the	training	data	as	1	and	some	generated	samples	provided	by	G	as	0.	This	way,	you	can	use	a	conventional	supervised	training	framework	to	update	the	parameters	of	D	in	order	to	minimize	a	loss
function,	as	shown	in	the	following	scheme:	For	each	batch	of	training	data	containing	labeled	real	and	generated	samples,	you	update	the	parameters	of	D	to	minimize	a	loss	function.	After	the	parameters	of	D	are	updated,	you	train	G	to	produce	better	generated	samples.	The	output	of	G	is	connected	to	D,	whose	parameters	are	kept	frozen,	as
depicted	here:	You	can	imagine	the	system	composed	of	G	and	D	as	a	single	classification	system	that	receives	random	samples	as	input	and	outputs	the	classification,	which	in	this	case	can	be	interpreted	as	a	probability.	When	G	does	a	good	enough	job	to	fool	D,	the	output	probability	should	be	close	to	1.	You	could	also	use	a	conventional
supervised	training	framework	here:	the	dataset	to	train	the	classification	system	composed	of	G	and	D	would	be	provided	by	random	input	samples,	and	the	label	associated	with	each	input	sample	would	be	1.	During	training,	as	the	parameters	of	D	and	G	are	updated,	it’s	expected	that	the	generated	samples	given	by	G	will	more	closely	resemble
the	real	data,	and	D	will	have	more	trouble	distinguishing	between	real	and	generated	data.	Now	that	you	know	how	GANs	work,	you’re	ready	to	implement	your	own	using	PyTorch.	As	a	first	experiment	with	generative	adversarial	networks,	you’ll	implement	the	example	described	in	the	previous	section.	To	run	the	example,	you’re	going	to	use	the
PyTorch	library,	which	you	can	install	using	the	Anaconda	Python	distribution	and	the	conda	package	and	environment	management	system.	To	learn	more	about	Anaconda	and	conda,	check	out	the	tutorial	on	Setting	Up	Python	for	Machine	Learning	on	Windows.	To	begin,	create	a	conda	environment	and	activate	it:	After	you	activate	the	conda
environment,	your	prompt	will	show	its	name,	gan.	Then	you	can	install	the	necessary	packages	inside	the	environment:	Since	PyTorch	is	a	very	actively	developed	framework,	the	API	may	change	on	new	releases.	To	ensure	the	example	code	will	run,	you	install	the	specific	version	1.4.0.	Besides	PyTorch,	you’re	going	to	use	Matplotlib	to	work	with
plots	and	a	Jupyter	Notebook	to	run	the	code	in	an	interactive	environment.	Doing	so	isn’t	mandatory,	but	it	facilitates	working	on	machine	learning	projects.	For	a	refresher	on	working	with	Matplotlib	and	Jupyter	Notebooks,	take	a	look	at	Python	Plotting	With	Matplotlib	(Guide)	and	Jupyter	Notebook:	An	Introduction.	Before	opening	Jupyter
Notebook,	you	Given	article	text	here	To	set	up	a	Conda	Gan	environment	for	creating	Jupyter	Notebooks,	activate	the	environment	and	run	`jupyter	notebook`.	Create	a	new	Notebook	by	clicking	"New"	and	selecting	"Gan".	Begin	by	importing	necessary	libraries:	PyTorch	(`torch`),	neural	networks	(`nn`),	and	Matplotlib	(`plt`).	Set	up	a	random
generator	seed	to	replicate	experiments	on	any	machine	using	`torch.manual_seed(111)`.	Prepare	the	training	data	by	composing	pairs	`(x₁,	x₂)`	where	`x₂`	is	the	sine	of	`x₁`	in	the	interval	from	0	to	2π.	Implement	this	as	follows:	-	Initialize	`train_data`,	a	tensor	with	dimensions	1024	rows	and	2	columns,	all	containing	zeros.	-	Store	random	values	in
the	interval	from	0	to	2π	in	the	first	column	of	`train_data`.	-	Calculate	the	second	column	as	the	sine	of	the	first	column.	-	Create	`train_labels`	as	a	tensor	filled	with	zeros.	-	Create	`train_set`	as	a	list	of	tuples,	where	each	row	is	represented	by	`train_data`	and	`train_labels`.	Examine	the	training	data	by	plotting	each	point	`(x₁,	x₂)`.	Create	a
PyTorch	data	loader	using	`data_loader	=	torch.utils.data.DataLoader(train_set,	batch_size=32,	shuffle=True)`.	Create	the	neural	networks	for	the	discriminator	and	generator	that	will	compose	the	GAN.	In	the	following	section,	you'll	implement	the	discriminator.	The	discriminator	is	a	model	with	a	two-dimensional	input	and	a	one-dimensional
output.	It	receives	a	sample	from	the	real	data	or	from	the	generator	and	provides	the	probability	that	the	sample	belongs	to	the	real	training	data.	The	code	below	shows	how	to	create	a	discriminator:	-	Use	`.__init__()`	to	build	the	discriminator	class,	inheriting	from	`nn.Module`.	The	process	of	creating	a	Generative	Adversarial	Network	(GAN)
begins	with	defining	the	model	architecture.	This	involves	calling	`super().__init__()`	to	run	the	initialization	method	from	`nn.Module`.	The	discriminator,	an	MLP	neural	network	defined	using	`nn.Sequential()`,	consists	of	several	layers.	The	first	hidden	layer	has	256	neurons	with	ReLU	activation,	followed	by	two	more	layers	with	128	and	64
neurons,	respectively,	also	with	ReLU	activation.	The	output	layer	contains	a	single	neuron	with	sigmoidal	activation	to	represent	the	probability.	Dropout	is	applied	after	each	hidden	layer	to	prevent	overfitting.	Finally,	the	`forward()`	method	describes	how	the	model's	output	is	calculated,	taking	into	account	the	input	`x`.	This	implementation
defines	the	discriminator	class	and	instantiates	it	as	an	object	called	`discriminator`.	To	implement	the	GAN,	a	generator	is	also	needed.	In	this	case,	the	generator	takes	random	points	`(z₁,	z₂)`	as	its	input	and	generates	data	resembling	that	in	the	training	set.	The	generator	has	a	two-dimensional	output	that	produces	`(x̃₁,	x̃₂)`	points.	Its
architecture	is	similar	to	that	of	the	discriminator,	consisting	of	two	hidden	layers	with	16	and	32	neurons,	respectively,	both	with	ReLU	activation,	followed	by	a	linear	activation	layer	with	2	neurons	in	the	output.	The	models	for	the	discriminator	and	generator	are	now	defined,	and	it's	possible	to	train	them.	Before	training,	some	parameters	need	to
be	set:	the	learning	rate	(lr),	the	number	of	epochs	(num_epochs),	and	the	loss	function	(loss_function).	The	binary	cross-entropy	function	BCELoss()	is	used	as	the	loss	function,	which	is	suitable	for	both	the	discriminator	and	generator.	The	Adam	weight	update	rule	from	`torch.optim`	will	be	used	to	train	the	models.	1.	To	train	the	discriminator	and
generator	models	for	GANs,	use	torch.optim	to	create	optimizers.	2.	Implement	a	training	loop	that	feeds	training	samples	to	models	and	updates	weights	to	minimize	loss	function.	3.	For	each	training	iteration,	update	discriminator	and	generator	parameters.	4.	The	training	process	consists	of	two	loops:	epochs	and	batches	per	epoch.	5.	In	the	inner
loop,	prepare	data	for	discriminator	training	by	getting	real	samples	from	data	loader	and	assigning	them	labels	with	value	1.	6.	Create	generated	samples	by	feeding	random	data	to	generator	and	storing	its	output.	7.	Concatenate	real	and	generated	samples	along	with	their	corresponding	labels	and	store	in	all_samples	and	all_samples_labels.	8.
Train	the	discriminator	by	clearing	gradients,	calculating	loss	function,	and	updating	weights.	9.	Prepare	data	for	generator	training	by	feeding	random	data	to	generator	and	storing	its	output.	10.	Train	the	generator	by	clearing	gradients,	feeding	it	to	the	discriminator,	and	updating	its	weights	while	keeping	the	discriminator's	weights	frozen.	11.	In
the	outer	loop,	repeat	steps	8-10	for	each	epoch.	12.	After	training	both	models,	use	them	to	generate	new	samples.	The	model's	loss	values	are	tracked	at	the	end	of	each	10-epoch	period.	Given	the	small	number	of	parameters	in	the	models	used	here,	training	will	be	finished	within	a	few	minutes.	In	the	following	section,	you'll	utilize	the	trained
GAN	to	generate	some	samples.	Generative	adversarial	networks	(GANs)	are	designed	to	generate	data;	thus,	after	the	training	process	is	complete,	you	can	get	some	random	samples	from	the	latent	space	and	feed	them	into	the	generator	to	obtain	generated	samples.	Before	plotting	the	generated	samples,	you	need	to	use	.detach()	to	return	a
tensor	from	the	PyTorch	computational	graph.	You'll	then	use	this	tensor	to	calculate	gradients.	The	output	should	resemble	the	distribution	in	the	following	figure.	By	utilizing	a	fixed	latent	space	sample	tensor	and	feeding	it	into	the	generator	at	the	end	of	each	epoch	during	training,	you	can	visualize	the	evolution	of	training.	Initially,	the	generated
data's	distribution	is	very	different	from	real	data;	however,	as	training	progresses,	the	generator	learns	to	represent	real	data	distributions.	In	this	example,	we'll	use	a	GAN	to	generate	images	of	handwritten	digits.	We're	going	to	train	models	using	the	MNIST	dataset,	which	includes	images	of	handwritten	digits	in	the	torchvision	package.	You
should	install	torchvision	in	your	activated	gan	conda	environment	before	proceeding.	We	set	up	the	random	generator	seed	to	replicate	experiments.	Since	this	example	uses	image	data,	more	complex	models	with	larger	numbers	of	parameters	are	needed.	This	makes	training	slower,	taking	about	two	minutes	per	epoch	when	using	a	CPU;	around
100	minutes	for	50	epochs.	To	reduce	training	time,	you	can	use	a	GPU	if	available,	but	it's	essential	to	manually	move	tensors	and	models	to	the	GPU	during	training.	You	can	ensure	your	code	will	run	on	either	setup	by	creating	a	device	object	that	points	to	either	the	CPU	or	the	GPU.	Transforms	are	used	in	PyTorch	to	convert	MNIST	dataset	into
tensors	and	normalize	its	range.	The	original	coefficients	given	by	ToTensor()	range	from	0	to	1,	while	Normalize()	changes	this	range	to	-1	to	1	for	better	training	results.	This	transformation	reduces	the	number	of	elements	equal	to	0	in	the	input	samples.	The	Normalize()	function	takes	two	tuples	as	arguments,	one	for	mean	and	another	for
standard	deviation.	For	grayscale	images	like	MNIST	dataset,	these	tuples	have	only	one	value	each.	Then,	Normalize()	subtracts	the	mean	from	the	coefficients	and	divides	the	result	by	the	standard	deviation.	The	training	data	can	be	loaded	using	torchvision.datasets.MNIST	and	transformed	accordingly.	To	improve	visualization	of	the	training	data,
Matplotlib	can	be	used	to	plot	some	samples	with	a	reversed	color	map,	showing	digits	in	black	over	a	white	background.	The	generator	is	fed	a	100-dimensional	input	and	produces	an	output	of	784	coefficients	arranged	as	a	28	×	28	tensor	resembling	an	image.	The	generator	model	code	includes	the	hyperbolic	tangent	function	Tanh()	as	the
activation	for	the	output	layer,	ensuring	the	output	falls	between	-1	to	1.	The	generator	instance	is	created	and	sent	to	a	GPU	if	available.	To	train	the	models,	training	parameters	and	optimizers	are	defined,	with	adjustments	made	to	decrease	the	learning	rate	and	increase	the	number	of	epochs	to	50	for	faster	results.	The	training	loop	involves
sending	data	to	the	device	when	available,	utilizing	the	GPU.	After	training,	generated	handwritten	digits	can	be	inspected	by	taking	random	samples	from	the	latent	space	and	feeding	them	to	the	generator.	The	output	should	resemble	real	handwritten	digits,	with	improvements	possible	through	additional	training	epochs	or	using	a	fixed	latent
space	sample	tensor.	As	you	delve	deeper	into	the	realm	of	generative	adversarial	networks,	stay	abreast	of	advancements	in	technical	and	scientific	literature	for	fresh	application	ideas.	Now	that	you	have	a	solid	grasp	of	the	basics,	explore	more	complex	applications.	For	further	insight,	dive	into	these	recommended	books	to	broaden	your
knowledge:	It's	also	worth	noting	that	machine	learning	encompasses	a	wide	range	of	model	structures	beyond	generative	adversarial	networks.	For	a	comprehensive	overview,	consult	these	additional	resources:	With	so	much	to	discover	in	the	world	of	machine	learning,	continue	learning	and	don't	hesitate	to	share	any	questions	or	comments	below!

Generative	adversarial	networks.	Generative	adversarial	networks	(gan.

